The encounter of elongating RNA polymerase Ⅱ (RNAPⅡo) with DNA lesions has severe consequences for the cell as this event provides a strong signal for P53-dependent apoptosis and cell cycle arrest. To counteract p...The encounter of elongating RNA polymerase Ⅱ (RNAPⅡo) with DNA lesions has severe consequences for the cell as this event provides a strong signal for P53-dependent apoptosis and cell cycle arrest. To counteract prolonged blockage of transcription, the cell removes the RNAPⅡo-blocking DNA lesions by transcription-coupled repair (TC-NER), a specialized subpathway of nucleotide excision repair (NER). Exposure of mice to UVB light or chemicals has elucidated that TC-NER is a critical survival pathway protecting against acute toxic and long-term effects (cancer) of genotoxic exposure. Deficiency in TC-NER is associated with mutations in the CSA and CSB genes giving rise to the rare human disorder Cockayne syndrome (CS). Recent data suggest that CSA and CSB play differential roles in mammalian TC-NER: CSB as a repair coupling factor to attract NER proteins, chromatin remodellers and the CSA- E3-ubiquitin ligase complex to the stalled RNAPⅡo. CSA is dispensable for attraction of NER proteins, yet in cooperation with CSB is required to recruit XAB2, the nucleosomal binding protein HMGN1 and TFⅡS. The emerging picture of TC-NER is complex: repair of transcription-blocking lesions occurs without displacement of the DNA damage-stalled RNAPⅡo, and requires at least two essential assembly factors (CSA and CSB), the core NER factors (except for XPC-RAD23B), and TC-NER specific factors. These and yet unidentified proteins will accomplish not only efficient repair of transcription-blocking lesions, but are also likely to contribute to DNA damage signalling events.展开更多
Objective:Nucleotide excision repair(NER)plays a vital role in maintaining genome stability,and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation.This study aimed to ev...Objective:Nucleotide excision repair(NER)plays a vital role in maintaining genome stability,and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation.This study aimed to evaluate the relationship between NER gene polymorphisms and the risk of hepatoblastoma in Eastern Chinese Han children.Methods:In this five-center case-control study,we enrolled 966 subjects from East China(193 hepatoblastoma patients and 773 healthy controls).The TaqMan method was used to genotype 19 single nucleotide polymorphisms(SNPs)in NER pathway genes,including ERCC1,XPA,XPC,XPD,XPF,and XPG.Then,multivariate logistic regression analysis was performed,and odds ratios(ORs)and 95%confidence intervals(95%CIs)were utilized to assess the strength of associations.Results:Three SNPs were related to hepatoblastoma risk.XPC rs2229090 and XPD rs3810366 significantly contributed to hepatoblastoma risk according to the dominant model(adjusted OR=1.49,95%CI=1.07−2.08,P=0.019;adjusted OR=1.66,95%CI=1.12−2.45,P=0.012,respectively).However,XPD rs238406 conferred a significantly decreased risk of hepatoblastoma under the dominant model(adjusted OR=0.68,95%CI=0.49−0.95;P=0.024).Stratified analysis demonstrated that these significant associations were more prominent in certain subgroups.Moreover,there was evidence of functional implications of these significant SNPs suggested by online expression quantitative trait loci(eQTLs)and splicing quantitative trait loci(sQTLs)analysis.Conclusions:In summary,NER pathway gene polymorphisms(XPC rs2229090,XPD rs3810366,and XPD rs238406)are significantly associated with hepatoblastoma risk,and further research is required to verify these findings.展开更多
Repair of bulky DNA adducts by the nucleotide excision repair (NER) pathway is one of the more versatile DNA repair pathways for the removal of DNA lesions. There are two subsets of the NER pathway, global genomic-N...Repair of bulky DNA adducts by the nucleotide excision repair (NER) pathway is one of the more versatile DNA repair pathways for the removal of DNA lesions. There are two subsets of the NER pathway, global genomic-NER (GG- NER) and transcription-coupled NER (TC-NER), which differ only in the step involving recognition of the DNA lesion. Following recognition of the damage, the sub-pathways then converge for the incision/excision steps and subsequent gap filling and ligation steps. This review will focus on the GGR sub-pathway of NER, while the TCR sub-pathway will be covered in another article in this issue. The ability of the NER pathway to repair a wide array of adducts stems, in part, from the mechanisms involved in the initial recognition step of the damaged DNA and results in NER impacting an equally wide array of human physiological responses and events. In this review, the impact of NER on carcinogenesis, neurological function, sensitivity to environmental factors and sensitivity to cancer therapeutics will be discussed. The knowledge generated in our understanding of the NER pathway over the past 40 years has resulted from advances in the fields of animal model systems, mammalian genetics and in vitro biochemistry, as well as from reconstitution studies and structural analyses of the proteins and enzymes that participate in this pathway. Each of these avenues of research has contributed significantly to our understanding of how the NER pathway works and how alterations in NER activity, both positive and negative, influence human biology.展开更多
BACKGROUND Single nucleotide polymorphisms(SNPs)are universally present in nucleotide excision repair(NER)pathway genes,which could make impacts on colorectal carcinogenesis and prognosis.AIM To explore the associatio...BACKGROUND Single nucleotide polymorphisms(SNPs)are universally present in nucleotide excision repair(NER)pathway genes,which could make impacts on colorectal carcinogenesis and prognosis.AIM To explore the association of all tagSNPs in NER pathway genes with colorectal cancer(CRC)risk and prognosis in a northern Chinese population by a two-stage case-control design composed of a discovery and validation stage.METHODS Genotyping for NER SNPs was performed using kompetitive allele specific PCR.In the discovery stage,39 tagSNPs in eight genes were genotyped in 368 subjects,including 184 CRC cases and 184 individual-matched controls.In the validation stage,13 SNPs in six genes were analyzed in a total of 1712 subjects,including 854 CRC cases and 858 CRC-free controls.RESULTS Two SNPs(XPA rs10817938 and XPC rs2607775)were associated with an increased CRC risk in overall and stratification analyses.Significant cumulative and interaction effects were also demonstrated in the studied SNPs on CRC risk.Another two SNPs(ERCC2 rs1052555 and ERCC5 rs2228959)were newly found to be associated with a poor overall survival of CRC patients.CONCLUSION Our findings suggest novel SNPs in NER pathway genes that can be predictive for CRC risk and prognosis in a large-scale Chinese population.The present study has referential values for the identification of all-round NER-based genetic biomarkers in predicting the susceptibility and clinical outcome of CRC.展开更多
Objective: A number of studies have reported the association of "XPA", "XPC", "XPD/ERCC2" gene polymorphisms with lung cancer risk. However, the results were conflict. To clarify the impact of polymorphisms of ...Objective: A number of studies have reported the association of "XPA", "XPC", "XPD/ERCC2" gene polymorphisms with lung cancer risk. However, the results were conflict. To clarify the impact of polymorphisms of "XPA", "XPC", "XPD/ERCC2", on lung cancer risk, a meta-analysis was performed in this study. Methods: The electronic databases PubMed and Embase were retrieved for studies included in this meta-analysis by "XPA", "XPC", "XPD/ERCC2", "lung", "cancer/neoplasm/tumor/carcinoma", "polymorphism" (An upper date limit of October, 31, 2009). A meta-analysis was performed to evaluate the relationship among XPA, XPC and XPD polymorphism and lung cancer risks. Results: A total of 31 publications retrieved from Pubmed and Embase included in this study. XPC A939C CC genotype increased lung cancer risk in total population (recessive genetic model: OR=1.23, 95% CI:1.05-1.44; homozygote comparison: OR=1.21,95%CI:1.02-1.43and CC vs. CA contrast: OR=1.25,95%CI:1.06-1.48), except in Asians. XPD A751C, 751C allele and CC genotype also increased lung cancer risk in total population and in Caucasians (recessive genetic model: Total population: OR=1.20, 95%CI:1.07-1.35). No significant correlation was found between XPD A751C and lung cancer risk in Asians and African Americans. XPD G312A AA genotype increased lung cancer risk in total population, in Asians and Caucasians(recessive genetic model: Total population: OR=1.20, 95%CI: 1.06-1.36). No significant association was found between XPA G23A, XPC C499T, XPD C156A and lung cancer risk. Conclusion: Our results suggest that the polymorphisms in XPC and XPD involve in lung cancer risks. XPA polymorphisms is less related to lung cancer risk.展开更多
Protein XPA plays critical roles in nucleotide excision repair pathway.Recent experimental work showed that the functional dynamics of XPA involves the one-dimensional diffusion along DNA to search the damage site.Her...Protein XPA plays critical roles in nucleotide excision repair pathway.Recent experimental work showed that the functional dynamics of XPA involves the one-dimensional diffusion along DNA to search the damage site.Here,we investigate the involved dynamical process using extensive coarse-grained molecular simulations at various salt concentrations.The results demonstrated strong salt concentration dependence of the diffusion mechanisms.At low salt concentrations,the one-dimensional diffusion with rotational coupling is the dominant mechanism.At high salt concentrations,the diffusion by three-dimensional mechanism becomes more probable.At wide range of salt concentrations,the residues involved in the DNA binding are similar and the one-dimensional diffusion of XPA along DNA displays sub-diffusive feature.This sub-diffusive feature is tentatively attributed to diverse strengths of XPA-DNA interactions.In addition,we showed that both binding to DNA and increasing salt concentration tend to stretch the conformation of the XPA,which increases the exposure extent of the sites for the binding of other repair proteins.展开更多
The roles of nucleotide excision repair (NER) proteins in removing UV-induced lesions are well defined. There are two distinct NER pathways: global genome NER (GG-NER) and transcription-coupled NER. In human GG-NER, t...The roles of nucleotide excision repair (NER) proteins in removing UV-induced lesions are well defined. There are two distinct NER pathways: global genome NER (GG-NER) and transcription-coupled NER. In human GG-NER, two heteromeric protein complexes, DDB1-DDB2 and XPC-RAD23, are responsible for initial lesion recognition. Here, we examined the genetic interactions between GG-NER and base excision repair (BER) genes during abasic (AP) site repair of Schizosaccharomyces pombe. Mutants of rhp7 (rhp7-rhp16 are functional homologs of DDB1-DDB2) and rhp41 (XPC homolog) were moderately sensitive to methyl methanesulfonate and slightly to sodium bisulfite. Nth1p most actively cleaves the AP site in S. pombe. Deletion of rhp7 or rhp41 from nth1Δ cells greatly increased their sensitivity to alkylation and deamination, indicating that Rhp7p and Rhp41p are involved in repair of the AP sites generated by the action of DNA glycosylase. Induction of rhp7 and rhp16 genes by different types of DNA damage supports the ability of GG-NER to remove non-bulky lesions. Therefore, GG-NER activity not only targets bulky DNA helix-distorting lesions, but can also efficiently remove AP sites synergistically with BER.展开更多
To assses the effect of single nucleotide polymorphism of excision repair cross-complementation group 1 C8092A on the clinical outcome and toxicity in advanced stage non-small cell lung cancer patients receiving first...To assses the effect of single nucleotide polymorphism of excision repair cross-complementation group 1 C8092A on the clinical outcome and toxicity in advanced stage non-small cell lung cancer patients receiving first line platinum based chemotherapy.MethodsThis article is a review of the current research on single nucleotide polymorphism and its effect on treatment outcome and toxicity of advanced stage lung cancer.Conclusion The observations indicate that more advanced studies and trials on C8092A SNPs are needed so as to assess if it could be used as a potential biomarker in the future.展开更多
Inhibition of DNA repair is one proposed mechanism for the co-mutagenicity/co-carcinogenicity of arsenic.This review summarizes the current literature on the effects of arsenic compounds on nucleotide excision repair(...Inhibition of DNA repair is one proposed mechanism for the co-mutagenicity/co-carcinogenicity of arsenic.This review summarizes the current literature on the effects of arsenic compounds on nucleotide excision repair(NER).Several possible mechanisms for the observed NER inhibition have been proposed.Modulation of the expression of NER proteins has been considered to be one possibility of impairing the NER process.However,data on the effects of arsenic on the expression of NER proteins remain inconsistent.It is more likely that arsenic inhibits the induction of accessory or other key proteins involved in cellular control of DNA repair pathways,such as p53.For example,arsenic affects p53 phosphorylation and p53 DNA binding activity,which could regulate NER through transcriptional activation of downstream NER genes.Although it is important to study possible direct inactivation of NER proteins by arsenic binding,indirect inactivation of proteins having thiol residues critical to their function or zinc finger proteins cannot be negated.For example,nitric oxide(NO) induced in arsenic-treated cells serves as a specific inhibitor of NER,possibly through NO-induced S-nitrosylation of proteins related to DNA repair.Poly(ADP-ribose) polymerase-1,a zinc finger protein implicated in both NER and base excision repair(BER),deserves special attention because of its involvement in NO production and its broad range of protein substrates including many repair enzymes.展开更多
AIM To investigate the interactions of the DNA repair gene excision repair cross complementing group 5(ERCC5) and the metabolic gene glutathione S-transferase pi 1(GSTP1) and their effects on atrophic gastritis(AG) an...AIM To investigate the interactions of the DNA repair gene excision repair cross complementing group 5(ERCC5) and the metabolic gene glutathione S-transferase pi 1(GSTP1) and their effects on atrophic gastritis(AG) and gastric cancer(GC) risk.METHODS Seven ERCC5 single nucleotide polymorphisms(SNPs)(rs1047768, rs2094258, rs2228959, rs4150291, rs4150383, rs751402, and rs873601) and GSTP1 SNP rs1695 were detected using the Sequenom MassA RRAY platform in 450 GC patients, 634 AG cases, and 621 healthy control subjects in a Chinese population.RESULTS Two pairwise combinations(ERCC5 rs2094258 and rs873601 with GSTP1 rs1695) influenced AG risk(P_(interaction) = 0.008 and 0.043, respectively), and the ERCC5 rs2094258-GSTP1 rs1695 SNP pair demonstrated an antagonistic effect, while ERCC5 rs873601-GSTP1 rs1695 showed a synergistic effect on AG risk OR = 0.51 and 1.79, respectively). No pairwise combinations were observed in relation to GC risk. There were no cumulative effects among the pairwise interactions(ERCC5 rs2094258 and rs873601 with GSTP1 rs1695) on AG susceptibility(P_(trend) > 0.05). When the modification effect of Helicobacter pylori(H. pylori) infection was evaluated, the cumulative effect of one of the aforementioned pairwise interactions(ERCC5 rs873601-GSTP1 rs1695) was associated with an increased AG risk in the case of negative H. pylori status(P_(trend)= 0.043).CONCLUSION There is a multifarious interaction between the DNA repair gene ERCC5 SNPs(rs2094258 and rs873601) and the metabolic gene GSTP1 rs1695, which may form the basis for various inter-individual susceptibilities to AG.展开更多
Telomeres are DNA-protein structures that form protective caps at the end of eukaryotic chromosomes,safeguarding the chromosomes from degradation and maintaining the genomic integrity.When DNA damage occurs,the cell w...Telomeres are DNA-protein structures that form protective caps at the end of eukaryotic chromosomes,safeguarding the chromosomes from degradation and maintaining the genomic integrity.When DNA damage occurs,the cell will activate its repair system to fix the errors to prevent cancer.There are three major molecular mechanisms of DNA repair:base excision repair(BER),nucleotide excision repair(NER),and mismatch repair(MMR).In this review article,we discuss the three canonical repair pathways at the telomeres and their functions in cancer prevention and therapy.展开更多
文摘The encounter of elongating RNA polymerase Ⅱ (RNAPⅡo) with DNA lesions has severe consequences for the cell as this event provides a strong signal for P53-dependent apoptosis and cell cycle arrest. To counteract prolonged blockage of transcription, the cell removes the RNAPⅡo-blocking DNA lesions by transcription-coupled repair (TC-NER), a specialized subpathway of nucleotide excision repair (NER). Exposure of mice to UVB light or chemicals has elucidated that TC-NER is a critical survival pathway protecting against acute toxic and long-term effects (cancer) of genotoxic exposure. Deficiency in TC-NER is associated with mutations in the CSA and CSB genes giving rise to the rare human disorder Cockayne syndrome (CS). Recent data suggest that CSA and CSB play differential roles in mammalian TC-NER: CSB as a repair coupling factor to attract NER proteins, chromatin remodellers and the CSA- E3-ubiquitin ligase complex to the stalled RNAPⅡo. CSA is dispensable for attraction of NER proteins, yet in cooperation with CSB is required to recruit XAB2, the nucleosomal binding protein HMGN1 and TFⅡS. The emerging picture of TC-NER is complex: repair of transcription-blocking lesions occurs without displacement of the DNA damage-stalled RNAPⅡo, and requires at least two essential assembly factors (CSA and CSB), the core NER factors (except for XPC-RAD23B), and TC-NER specific factors. These and yet unidentified proteins will accomplish not only efficient repair of transcription-blocking lesions, but are also likely to contribute to DNA damage signalling events.
基金supported by grants from the Innovation and Cultivation Fund Project of the Seventh Medical Center,PLA General Hospital(No.QZX-2023-7)Postdoctoral Science Foundation of China(No.2021M691649)Postdoctoral Science Foundation of Jiangsu Province(No.2021K524C).
文摘Objective:Nucleotide excision repair(NER)plays a vital role in maintaining genome stability,and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation.This study aimed to evaluate the relationship between NER gene polymorphisms and the risk of hepatoblastoma in Eastern Chinese Han children.Methods:In this five-center case-control study,we enrolled 966 subjects from East China(193 hepatoblastoma patients and 773 healthy controls).The TaqMan method was used to genotype 19 single nucleotide polymorphisms(SNPs)in NER pathway genes,including ERCC1,XPA,XPC,XPD,XPF,and XPG.Then,multivariate logistic regression analysis was performed,and odds ratios(ORs)and 95%confidence intervals(95%CIs)were utilized to assess the strength of associations.Results:Three SNPs were related to hepatoblastoma risk.XPC rs2229090 and XPD rs3810366 significantly contributed to hepatoblastoma risk according to the dominant model(adjusted OR=1.49,95%CI=1.07−2.08,P=0.019;adjusted OR=1.66,95%CI=1.12−2.45,P=0.012,respectively).However,XPD rs238406 conferred a significantly decreased risk of hepatoblastoma under the dominant model(adjusted OR=0.68,95%CI=0.49−0.95;P=0.024).Stratified analysis demonstrated that these significant associations were more prominent in certain subgroups.Moreover,there was evidence of functional implications of these significant SNPs suggested by online expression quantitative trait loci(eQTLs)and splicing quantitative trait loci(sQTLs)analysis.Conclusions:In summary,NER pathway gene polymorphisms(XPC rs2229090,XPD rs3810366,and XPD rs238406)are significantly associated with hepatoblastoma risk,and further research is required to verify these findings.
文摘Repair of bulky DNA adducts by the nucleotide excision repair (NER) pathway is one of the more versatile DNA repair pathways for the removal of DNA lesions. There are two subsets of the NER pathway, global genomic-NER (GG- NER) and transcription-coupled NER (TC-NER), which differ only in the step involving recognition of the DNA lesion. Following recognition of the damage, the sub-pathways then converge for the incision/excision steps and subsequent gap filling and ligation steps. This review will focus on the GGR sub-pathway of NER, while the TCR sub-pathway will be covered in another article in this issue. The ability of the NER pathway to repair a wide array of adducts stems, in part, from the mechanisms involved in the initial recognition step of the damaged DNA and results in NER impacting an equally wide array of human physiological responses and events. In this review, the impact of NER on carcinogenesis, neurological function, sensitivity to environmental factors and sensitivity to cancer therapeutics will be discussed. The knowledge generated in our understanding of the NER pathway over the past 40 years has resulted from advances in the fields of animal model systems, mammalian genetics and in vitro biochemistry, as well as from reconstitution studies and structural analyses of the proteins and enzymes that participate in this pathway. Each of these avenues of research has contributed significantly to our understanding of how the NER pathway works and how alterations in NER activity, both positive and negative, influence human biology.
基金Supported by the National Key R&D Program of China,No.2018YFC1311600
文摘BACKGROUND Single nucleotide polymorphisms(SNPs)are universally present in nucleotide excision repair(NER)pathway genes,which could make impacts on colorectal carcinogenesis and prognosis.AIM To explore the association of all tagSNPs in NER pathway genes with colorectal cancer(CRC)risk and prognosis in a northern Chinese population by a two-stage case-control design composed of a discovery and validation stage.METHODS Genotyping for NER SNPs was performed using kompetitive allele specific PCR.In the discovery stage,39 tagSNPs in eight genes were genotyped in 368 subjects,including 184 CRC cases and 184 individual-matched controls.In the validation stage,13 SNPs in six genes were analyzed in a total of 1712 subjects,including 854 CRC cases and 858 CRC-free controls.RESULTS Two SNPs(XPA rs10817938 and XPC rs2607775)were associated with an increased CRC risk in overall and stratification analyses.Significant cumulative and interaction effects were also demonstrated in the studied SNPs on CRC risk.Another two SNPs(ERCC2 rs1052555 and ERCC5 rs2228959)were newly found to be associated with a poor overall survival of CRC patients.CONCLUSION Our findings suggest novel SNPs in NER pathway genes that can be predictive for CRC risk and prognosis in a large-scale Chinese population.The present study has referential values for the identification of all-round NER-based genetic biomarkers in predicting the susceptibility and clinical outcome of CRC.
基金supported by the grants from the National Eleveth-Five-Year Key Task Project of China(No.2006BA102A01)the National "863" High Tech R & D Program of China(No.2006AA02A401)China-Sweden International Scientific and Technological Cooperative Project (No.09ZCZDSF04100)
文摘Objective: A number of studies have reported the association of "XPA", "XPC", "XPD/ERCC2" gene polymorphisms with lung cancer risk. However, the results were conflict. To clarify the impact of polymorphisms of "XPA", "XPC", "XPD/ERCC2", on lung cancer risk, a meta-analysis was performed in this study. Methods: The electronic databases PubMed and Embase were retrieved for studies included in this meta-analysis by "XPA", "XPC", "XPD/ERCC2", "lung", "cancer/neoplasm/tumor/carcinoma", "polymorphism" (An upper date limit of October, 31, 2009). A meta-analysis was performed to evaluate the relationship among XPA, XPC and XPD polymorphism and lung cancer risks. Results: A total of 31 publications retrieved from Pubmed and Embase included in this study. XPC A939C CC genotype increased lung cancer risk in total population (recessive genetic model: OR=1.23, 95% CI:1.05-1.44; homozygote comparison: OR=1.21,95%CI:1.02-1.43and CC vs. CA contrast: OR=1.25,95%CI:1.06-1.48), except in Asians. XPD A751C, 751C allele and CC genotype also increased lung cancer risk in total population and in Caucasians (recessive genetic model: Total population: OR=1.20, 95%CI:1.07-1.35). No significant correlation was found between XPD A751C and lung cancer risk in Asians and African Americans. XPD G312A AA genotype increased lung cancer risk in total population, in Asians and Caucasians(recessive genetic model: Total population: OR=1.20, 95%CI: 1.06-1.36). No significant association was found between XPA G23A, XPC C499T, XPD C156A and lung cancer risk. Conclusion: Our results suggest that the polymorphisms in XPC and XPD involve in lung cancer risks. XPA polymorphisms is less related to lung cancer risk.
基金supported by the National Natural Science Foundation of China(Grant Nos.11974173 and 11774158)the HPC center of Nanjing University。
文摘Protein XPA plays critical roles in nucleotide excision repair pathway.Recent experimental work showed that the functional dynamics of XPA involves the one-dimensional diffusion along DNA to search the damage site.Here,we investigate the involved dynamical process using extensive coarse-grained molecular simulations at various salt concentrations.The results demonstrated strong salt concentration dependence of the diffusion mechanisms.At low salt concentrations,the one-dimensional diffusion with rotational coupling is the dominant mechanism.At high salt concentrations,the diffusion by three-dimensional mechanism becomes more probable.At wide range of salt concentrations,the residues involved in the DNA binding are similar and the one-dimensional diffusion of XPA along DNA displays sub-diffusive feature.This sub-diffusive feature is tentatively attributed to diverse strengths of XPA-DNA interactions.In addition,we showed that both binding to DNA and increasing salt concentration tend to stretch the conformation of the XPA,which increases the exposure extent of the sites for the binding of other repair proteins.
文摘The roles of nucleotide excision repair (NER) proteins in removing UV-induced lesions are well defined. There are two distinct NER pathways: global genome NER (GG-NER) and transcription-coupled NER. In human GG-NER, two heteromeric protein complexes, DDB1-DDB2 and XPC-RAD23, are responsible for initial lesion recognition. Here, we examined the genetic interactions between GG-NER and base excision repair (BER) genes during abasic (AP) site repair of Schizosaccharomyces pombe. Mutants of rhp7 (rhp7-rhp16 are functional homologs of DDB1-DDB2) and rhp41 (XPC homolog) were moderately sensitive to methyl methanesulfonate and slightly to sodium bisulfite. Nth1p most actively cleaves the AP site in S. pombe. Deletion of rhp7 or rhp41 from nth1Δ cells greatly increased their sensitivity to alkylation and deamination, indicating that Rhp7p and Rhp41p are involved in repair of the AP sites generated by the action of DNA glycosylase. Induction of rhp7 and rhp16 genes by different types of DNA damage supports the ability of GG-NER to remove non-bulky lesions. Therefore, GG-NER activity not only targets bulky DNA helix-distorting lesions, but can also efficiently remove AP sites synergistically with BER.
文摘To assses the effect of single nucleotide polymorphism of excision repair cross-complementation group 1 C8092A on the clinical outcome and toxicity in advanced stage non-small cell lung cancer patients receiving first line platinum based chemotherapy.MethodsThis article is a review of the current research on single nucleotide polymorphism and its effect on treatment outcome and toxicity of advanced stage lung cancer.Conclusion The observations indicate that more advanced studies and trials on C8092A SNPs are needed so as to assess if it could be used as a potential biomarker in the future.
基金supported by the Canadian Institutes of Health Researchthe Natural Sciences and Engineering Research Council of Canada+2 种基金the Canada Research Chairs ProgramAlberta Health and Wellness,Alberta Cancer FoundationAlberta Innovates Energy and Environment Solutions
文摘Inhibition of DNA repair is one proposed mechanism for the co-mutagenicity/co-carcinogenicity of arsenic.This review summarizes the current literature on the effects of arsenic compounds on nucleotide excision repair(NER).Several possible mechanisms for the observed NER inhibition have been proposed.Modulation of the expression of NER proteins has been considered to be one possibility of impairing the NER process.However,data on the effects of arsenic on the expression of NER proteins remain inconsistent.It is more likely that arsenic inhibits the induction of accessory or other key proteins involved in cellular control of DNA repair pathways,such as p53.For example,arsenic affects p53 phosphorylation and p53 DNA binding activity,which could regulate NER through transcriptional activation of downstream NER genes.Although it is important to study possible direct inactivation of NER proteins by arsenic binding,indirect inactivation of proteins having thiol residues critical to their function or zinc finger proteins cannot be negated.For example,nitric oxide(NO) induced in arsenic-treated cells serves as a specific inhibitor of NER,possibly through NO-induced S-nitrosylation of proteins related to DNA repair.Poly(ADP-ribose) polymerase-1,a zinc finger protein implicated in both NER and base excision repair(BER),deserves special attention because of its involvement in NO production and its broad range of protein substrates including many repair enzymes.
基金Supported by the National Science and Technology Support Program,No.2015BAI13B07
文摘AIM To investigate the interactions of the DNA repair gene excision repair cross complementing group 5(ERCC5) and the metabolic gene glutathione S-transferase pi 1(GSTP1) and their effects on atrophic gastritis(AG) and gastric cancer(GC) risk.METHODS Seven ERCC5 single nucleotide polymorphisms(SNPs)(rs1047768, rs2094258, rs2228959, rs4150291, rs4150383, rs751402, and rs873601) and GSTP1 SNP rs1695 were detected using the Sequenom MassA RRAY platform in 450 GC patients, 634 AG cases, and 621 healthy control subjects in a Chinese population.RESULTS Two pairwise combinations(ERCC5 rs2094258 and rs873601 with GSTP1 rs1695) influenced AG risk(P_(interaction) = 0.008 and 0.043, respectively), and the ERCC5 rs2094258-GSTP1 rs1695 SNP pair demonstrated an antagonistic effect, while ERCC5 rs873601-GSTP1 rs1695 showed a synergistic effect on AG risk OR = 0.51 and 1.79, respectively). No pairwise combinations were observed in relation to GC risk. There were no cumulative effects among the pairwise interactions(ERCC5 rs2094258 and rs873601 with GSTP1 rs1695) on AG susceptibility(P_(trend) > 0.05). When the modification effect of Helicobacter pylori(H. pylori) infection was evaluated, the cumulative effect of one of the aforementioned pairwise interactions(ERCC5 rs873601-GSTP1 rs1695) was associated with an increased AG risk in the case of negative H. pylori status(P_(trend)= 0.043).CONCLUSION There is a multifarious interaction between the DNA repair gene ERCC5 SNPs(rs2094258 and rs873601) and the metabolic gene GSTP1 rs1695, which may form the basis for various inter-individual susceptibilities to AG.
基金The National Natural Science Foundation of China(No.31760323).
文摘Telomeres are DNA-protein structures that form protective caps at the end of eukaryotic chromosomes,safeguarding the chromosomes from degradation and maintaining the genomic integrity.When DNA damage occurs,the cell will activate its repair system to fix the errors to prevent cancer.There are three major molecular mechanisms of DNA repair:base excision repair(BER),nucleotide excision repair(NER),and mismatch repair(MMR).In this review article,we discuss the three canonical repair pathways at the telomeres and their functions in cancer prevention and therapy.