CREB-binding protein (CBP) and its homologue p300 are transcriptional co-activators of various sequence-specific transcription factors that are involved in a wide array of cellular activities, such as DNA repair, ce...CREB-binding protein (CBP) and its homologue p300 are transcriptional co-activators of various sequence-specific transcription factors that are involved in a wide array of cellular activities, such as DNA repair, cell growth, differentia- tion and apoptosis. Several studies have suggested that CBP and p300 might be considered as tumour suppressors, with their prominent role being the cross-coupling of distinct gene expression patterns in response to various stimuli. They exert their actions mainly via acetylation of histones and other regulatory proteins (e.g. p53). A major paradox in CBP/ p300 function is that they seem capable of contributing to various opposed cellular processes. Respiratory epithelium tumorigenesis represents a complex process of multi-step accumulations of a gamut of genetic and epigenetic aberrations. Transcription modulation through the alternate formation of activating and repressive complexes is the ultimate converging point of these derangements, and CBP/p300 represents key participants in this interplay. Thus, illumination of their molecular actions and interactions could reveal new potential targets for pharmacological interventions in respiratory epithelium carcinogenesis.展开更多
Objective: The results of a previous study showed that a clear dysregulation was evident in the global gene expression of the BCL11A-suppressed B-lymphoma cells. In this study, the bone morphogenetic protein receptor,...Objective: The results of a previous study showed that a clear dysregulation was evident in the global gene expression of the BCL11A-suppressed B-lymphoma cells. In this study, the bone morphogenetic protein receptor, type II(BMPR2), E1 A binding protein p300(EP300), transforming growth factor-β2(TGFβ2), and tumor necrosis factor, and alpha-induced protein 3(TNFAIP3) gene expression patterns in B-cell malignancies were studied. Methods: The relative expression levels of BMPR2, EP300, TGFβ2, and TNFAIP3 mRNA in B-lymphoma cell lines, myeloid cell lines, as well as in cells from healthy volunteers, were determined by real-time quantitative reverse transcriptpolymerase chain reaction(qRT-PCR) with SYBR Green Dye. Glyceraldehyde-3-phosphate dehydrogenase(GAPDH) was used as reference. Results: The expression level of TGFβ2 mRNA in B-lymphoma cell lines was significantly higher than those in the cells from the healthy control(P<0.05). However, the expression level of TNFAIP3 mRNA in B-malignant cells was significantly lower than that of the healthy control(P<0.05). The expression levels of BMPR2 and EP300 mRNA showed no significant difference between B-malignant cell lines and the healthy group(P>0.05). In B-lymphoma cell lines, correlation analyses revealed that the expression of BMPR2 and TNFAIP3(r=0.882, P=0.04) had significant positive relation. The expression levels of BMPR2, EP300, and TNFAIP3 mRNA in cell lines from myeloid leukemia were significantly lower than those in the cells from the healthy control(P<0.05). The expression levels of TGFβ2 mRNA showed no significant difference between myeloid leukemia cell lines and the healthy control or B-malignant cell lines(P>0.05). The expression levels of BMPR2, EP300, and TNFAIP3 mRNA in B-lymphoma cells were significantly higher than those of the myeloid leukemia cells(P<0.05).Conclusion: Different expression patterns of BMPR2, EP300, TGFβ2, and TNFAIP3 genes in B-lymphoma cells exist.展开更多
In order to provide the means for the design of novel rational anti-cancer drug therapies research efforts are concentrated on unravelling the molecular circuits which induce programmed cell death and block proliferat...In order to provide the means for the design of novel rational anti-cancer drug therapies research efforts are concentrated on unravelling the molecular circuits which induce programmed cell death and block proliferation of cancer cells.Modern therapeutic strategies are based on the understanding of the complexity of physiological functions such as differentiation,development,immune responses,cell-cycle arrest,DNA damage repair,apoptosis,autophagy,energy metabolism,and senescence.It has become evident that this knowledge will provide the means to target the components of the pathways involved in these processes in a specific and selective manner thus paving the way for the development of effective and personalised anti-cancer therapies.Transcription is a crucial cellular process that regulates a multitude of physiological functions,which are essential in disease progression and cellular response to therapy.Transcription factors such as the p53 tumor suppressor and the hypoxia-inducible factor-α(HIF-α) are key players in carcinogenesis and cellular response to cancer therapies.Both of these transcription factors regulate gene expression of genes involved in cell death and proliferation,in some cases cooperating towards producing the same outcome and in some others mediating opposing effects.It is thus apparent that fine tuning of the activity of these transcription factors is essential to determine the cellular response to therapeutic regimens,in other words whether tumor cells will commit to apoptosis or evade engagement with the anti-proliferative effects of drugs leading to drug resistance.Our observations support the notion that the functional crosstalk between HIF-1α and p53 pathways and thus the fine tuning of their transcriptional activity is mediated by cofactors shared between the two transcription factors such as components of the p300 co-activator multiprotein complex.In particular,there is evidence to suggest that differential composition of the co-modulatory protein complexes associated with p53 and HIF-la under diverse types of stress conditions differentially regulate the expression of distinct subsets of p53 and HIF-la target genes involved in processes such as cell cycle arrest,apoptosis,chronic inflammation,and cellular energy metabolism thereby determining the cellular fate under particular types of microenvironmental stress.展开更多
Tea domain transcription factor 4 (TEAD4) plays a pivotal role in tissue development and homeostasis by interacting with Yesassociated protein (YAP) in response to Hippo signaling inactivation. TEAD4 and YAP can also ...Tea domain transcription factor 4 (TEAD4) plays a pivotal role in tissue development and homeostasis by interacting with Yesassociated protein (YAP) in response to Hippo signaling inactivation. TEAD4 and YAP can also cooperate with transforminggrowth factor-β (TGF-β)-activated Smad proteins to regulate gene transcription. Yet, it remains unclear whether TEAD4 playsa YAP-independent role in TGF-β signaling. Here, we unveil a novel tumor suppressive function of TEAD4 in liver cancer viamitigating TGF-β signaling. Ectopic TEAD4 inhibited TGF-β-induced signal transduction, Smad transcriptional activity, and targetgene transcription, consequently suppressing hepatocellular carcinoma cell proliferation and migration in vitro and xenografttumorgrowth in mice. Consistently, depletion of endogenous TEAD4 by siRNAs enhanced TGF-β signaling in cancer cells. Mechanistically,TEAD4 associates with receptor-regulated Smads (Smad2/3) and Smad4 in the nucleus, thereby impairing the binding of Smad2/3to the histone acetyltransferase p300. Intriguingly, these negative effects of TEAD4 on TGF-β/Smad signaling are independent ofYAP, as impairing the TEAD4–YAP interaction through point mutagenesis or depletion of YAP and/or its paralog TAZ has little effect.Together, these results unravel a novel function of TEAD4 in fine tuning TGF-β signaling and liver cancer progression in a YAPindependent manner.展开更多
The human pituitary tumor transforming gene (hPTTG) serves as a marker for malignancy grading in several cancers, hPTTG is involved in multiple cellular pathways including cell transformation, apoptosis, DNA repair,...The human pituitary tumor transforming gene (hPTTG) serves as a marker for malignancy grading in several cancers, hPTTG is involved in multiple cellular pathways including cell transformation, apoptosis, DNA repair, genomic instability, mitotic control and angiogenesis induction. However, the molecular mechanisms underlying hPTTG regulation have not been fully explored. In this study, we found that overexpression of histone acetyltransferase (HAT) p300 upregulated hPTTG at the levels of promoter activity, mRNA and protein expression. Moreover, the HAT activity of p300 was critical for its regulatory function. Chromatin immunoprecipitation (CHIP) analysis revealed that overexpression of p300 elevated the level of histone H3 acetylation on the hPTTG promoter. Additionally, the NF-Y sites at the hPTTG promoter exhibited a synergistic effect on upregulation of hPTTG through interacting with p300. We also found that treatment of 293T cells with the histone deacetylase (HDAC) inhibitor Tfichostatin A (TSA) increased hPTTG promoter activity. Meanwhile, we provided evidence that HDAC3 decreased hPTTG promoter activity. These data implicate an important role of the histone acetylafion modification in the regulation of hPTTG.展开更多
文摘CREB-binding protein (CBP) and its homologue p300 are transcriptional co-activators of various sequence-specific transcription factors that are involved in a wide array of cellular activities, such as DNA repair, cell growth, differentia- tion and apoptosis. Several studies have suggested that CBP and p300 might be considered as tumour suppressors, with their prominent role being the cross-coupling of distinct gene expression patterns in response to various stimuli. They exert their actions mainly via acetylation of histones and other regulatory proteins (e.g. p53). A major paradox in CBP/ p300 function is that they seem capable of contributing to various opposed cellular processes. Respiratory epithelium tumorigenesis represents a complex process of multi-step accumulations of a gamut of genetic and epigenetic aberrations. Transcription modulation through the alternate formation of activating and repressive complexes is the ultimate converging point of these derangements, and CBP/p300 represents key participants in this interplay. Thus, illumination of their molecular actions and interactions could reveal new potential targets for pharmacological interventions in respiratory epithelium carcinogenesis.
基金supported by the Guangdong Province Key Foundation of Science and Technology Program (Grant No.2009B0507000029)the Guangdong Province Science and Technology Program (Grant No.2012B031800474)a grant from the Overseas Chinese Affairs Office of the State Council Key Discipline Construction Fund (Grant No.51205002)
文摘Objective: The results of a previous study showed that a clear dysregulation was evident in the global gene expression of the BCL11A-suppressed B-lymphoma cells. In this study, the bone morphogenetic protein receptor, type II(BMPR2), E1 A binding protein p300(EP300), transforming growth factor-β2(TGFβ2), and tumor necrosis factor, and alpha-induced protein 3(TNFAIP3) gene expression patterns in B-cell malignancies were studied. Methods: The relative expression levels of BMPR2, EP300, TGFβ2, and TNFAIP3 mRNA in B-lymphoma cell lines, myeloid cell lines, as well as in cells from healthy volunteers, were determined by real-time quantitative reverse transcriptpolymerase chain reaction(qRT-PCR) with SYBR Green Dye. Glyceraldehyde-3-phosphate dehydrogenase(GAPDH) was used as reference. Results: The expression level of TGFβ2 mRNA in B-lymphoma cell lines was significantly higher than those in the cells from the healthy control(P<0.05). However, the expression level of TNFAIP3 mRNA in B-malignant cells was significantly lower than that of the healthy control(P<0.05). The expression levels of BMPR2 and EP300 mRNA showed no significant difference between B-malignant cell lines and the healthy group(P>0.05). In B-lymphoma cell lines, correlation analyses revealed that the expression of BMPR2 and TNFAIP3(r=0.882, P=0.04) had significant positive relation. The expression levels of BMPR2, EP300, and TNFAIP3 mRNA in cell lines from myeloid leukemia were significantly lower than those in the cells from the healthy control(P<0.05). The expression levels of TGFβ2 mRNA showed no significant difference between myeloid leukemia cell lines and the healthy control or B-malignant cell lines(P>0.05). The expression levels of BMPR2, EP300, and TNFAIP3 mRNA in B-lymphoma cells were significantly higher than those of the myeloid leukemia cells(P<0.05).Conclusion: Different expression patterns of BMPR2, EP300, TGFβ2, and TNFAIP3 genes in B-lymphoma cells exist.
文摘In order to provide the means for the design of novel rational anti-cancer drug therapies research efforts are concentrated on unravelling the molecular circuits which induce programmed cell death and block proliferation of cancer cells.Modern therapeutic strategies are based on the understanding of the complexity of physiological functions such as differentiation,development,immune responses,cell-cycle arrest,DNA damage repair,apoptosis,autophagy,energy metabolism,and senescence.It has become evident that this knowledge will provide the means to target the components of the pathways involved in these processes in a specific and selective manner thus paving the way for the development of effective and personalised anti-cancer therapies.Transcription is a crucial cellular process that regulates a multitude of physiological functions,which are essential in disease progression and cellular response to therapy.Transcription factors such as the p53 tumor suppressor and the hypoxia-inducible factor-α(HIF-α) are key players in carcinogenesis and cellular response to cancer therapies.Both of these transcription factors regulate gene expression of genes involved in cell death and proliferation,in some cases cooperating towards producing the same outcome and in some others mediating opposing effects.It is thus apparent that fine tuning of the activity of these transcription factors is essential to determine the cellular response to therapeutic regimens,in other words whether tumor cells will commit to apoptosis or evade engagement with the anti-proliferative effects of drugs leading to drug resistance.Our observations support the notion that the functional crosstalk between HIF-1α and p53 pathways and thus the fine tuning of their transcriptional activity is mediated by cofactors shared between the two transcription factors such as components of the p300 co-activator multiprotein complex.In particular,there is evidence to suggest that differential composition of the co-modulatory protein complexes associated with p53 and HIF-la under diverse types of stress conditions differentially regulate the expression of distinct subsets of p53 and HIF-la target genes involved in processes such as cell cycle arrest,apoptosis,chronic inflammation,and cellular energy metabolism thereby determining the cellular fate under particular types of microenvironmental stress.
基金supported by grants from the NationalNatural Science Foundation of China(NSFC32060148,31871378,82172888,and 81860546)+2 种基金the Natural Science Foundation of Jiangxi Province of China(20224ACB206032)the Talent Plan of Jiangxi Province of China(jxsq2018106037)the Jiangxi Province Graduate Innovation Fund(YC2018-B017).
文摘Tea domain transcription factor 4 (TEAD4) plays a pivotal role in tissue development and homeostasis by interacting with Yesassociated protein (YAP) in response to Hippo signaling inactivation. TEAD4 and YAP can also cooperate with transforminggrowth factor-β (TGF-β)-activated Smad proteins to regulate gene transcription. Yet, it remains unclear whether TEAD4 playsa YAP-independent role in TGF-β signaling. Here, we unveil a novel tumor suppressive function of TEAD4 in liver cancer viamitigating TGF-β signaling. Ectopic TEAD4 inhibited TGF-β-induced signal transduction, Smad transcriptional activity, and targetgene transcription, consequently suppressing hepatocellular carcinoma cell proliferation and migration in vitro and xenografttumorgrowth in mice. Consistently, depletion of endogenous TEAD4 by siRNAs enhanced TGF-β signaling in cancer cells. Mechanistically,TEAD4 associates with receptor-regulated Smads (Smad2/3) and Smad4 in the nucleus, thereby impairing the binding of Smad2/3to the histone acetyltransferase p300. Intriguingly, these negative effects of TEAD4 on TGF-β/Smad signaling are independent ofYAP, as impairing the TEAD4–YAP interaction through point mutagenesis or depletion of YAP and/or its paralog TAZ has little effect.Together, these results unravel a novel function of TEAD4 in fine tuning TGF-β signaling and liver cancer progression in a YAPindependent manner.
基金supported by the National Basic Research Program of China (No. 2005CB522404 and 2006CB910506)the Program for Changjiang Scholars and Innovative Research Team (PCSIRT) in Universities (IRT0519)the National Natural Science Foundation of China (No. 30771232 and 30671184)
文摘The human pituitary tumor transforming gene (hPTTG) serves as a marker for malignancy grading in several cancers, hPTTG is involved in multiple cellular pathways including cell transformation, apoptosis, DNA repair, genomic instability, mitotic control and angiogenesis induction. However, the molecular mechanisms underlying hPTTG regulation have not been fully explored. In this study, we found that overexpression of histone acetyltransferase (HAT) p300 upregulated hPTTG at the levels of promoter activity, mRNA and protein expression. Moreover, the HAT activity of p300 was critical for its regulatory function. Chromatin immunoprecipitation (CHIP) analysis revealed that overexpression of p300 elevated the level of histone H3 acetylation on the hPTTG promoter. Additionally, the NF-Y sites at the hPTTG promoter exhibited a synergistic effect on upregulation of hPTTG through interacting with p300. We also found that treatment of 293T cells with the histone deacetylase (HDAC) inhibitor Tfichostatin A (TSA) increased hPTTG promoter activity. Meanwhile, we provided evidence that HDAC3 decreased hPTTG promoter activity. These data implicate an important role of the histone acetylafion modification in the regulation of hPTTG.