Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid ...Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid with anti-inflammatory and immunoregulatory properties.Therefore,we speculated that API can ameliorate psoriasis,and determined its effect on the development of psoriasis by using imiquimod(IMQ)-induced psoriasis mouse model.Our results showed that API attenuated IMQ-induced phenotypic changes,such as erythema,scaling and epidermal thickening,and improved splenic hyperplasia.Abnormal differentiation of immune cells was restored in API-treated mice.Mechanistically,we revealed that API is a key regulator of signal transducer activator of transcription 3(STAT3).API regulated immune responses by reducing interleukin-23(IL-23)/STAT3/IL-17A axis.Moreover,it suppressed IMQ-caused cell hyperproliferation by inactivating STAT3 through regulation of extracellular signal-regulated kinase 1/2 and nuclear factor-κB(NF-κB)pathway.Furthermore,API reduced expression of inflammatory cytokines through inactivation of NF-κB.Taken together,our study demonstrates that API can ameliorate psoriasis and may be considered as a strategy for psoriasis treatment.展开更多
Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating t...Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating trichome development and salt tolerance in rice.Here we report that knockout of OsSPL10 reduces whereas its overexpression enhances rice resistance to blast disease.OsSPL10 positively regulates chitin-induced immune responses including reactive oxygen species(ROS)burst and callose deposition.We show that OsSPL10 physically associates with OsJAmyb,an important TF involved in jasmonic acid(JA)signaling,and positively regulates its protein stability.We then prove that OsJAmyb positively regulates resistance to blast.Our results reveal a molecular module consisting of OsSPL10 and OsJAmyb that positively regulates blast resistance.展开更多
Verticillium dahliae is an important fungal pathogen affecting cotton yield and quality.Therefore,the mining of V.dahlia-resistance genes is urgently needed.Proteases and protease inhibitors play crucial roles in plan...Verticillium dahliae is an important fungal pathogen affecting cotton yield and quality.Therefore,the mining of V.dahlia-resistance genes is urgently needed.Proteases and protease inhibitors play crucial roles in plant defense responses.However,the functions and regulatory mechanisms of the protease inhibitor PR6 gene family remain largely unknown.This study provides a comprehensive analysis of the PR6 gene family in the cotton genome.We performed genome-wide identification and functional characterization of the cotton GhPR6 gene family,which belongs to the potato protease inhibitor I family of inhibitors.Thirty-nine PR6s were identified in Gossypium arboreum,G.raimondii,G.barbadense,and G.hirsutum,and they were clustered into four groups.Based on the analysis of pathogen-induced and Ghlmm transcriptome data,Gh PR6-5b was identified as the key gene for V.dahliae resistance.Virus-induced gene silencing experiments revealed that cotton was more sensitive to V.dahliae V991after PR6-5b silencing.The present study established that GhWRKY75 plays an important role in resistance to Verticillium wilt in cotton by positively regulating GhPR6-5b expression by directly binding to the W-box TTGAC(T/C).Our findings established that GhWRKY75 is a potential candidate for improving cotton resistance to V.dahliae,and provide primary information for further investigations and the development of specific strategies to bolster the defense mechanisms of cotton against V.dahliae.展开更多
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord...Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.展开更多
Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biol...Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development.展开更多
Neuronal injury,aging,and cerebrovascular and neurodegenerative diseases such as cerebral infarction,Alzheimer’s disease,Parkinson’s disease,frontotemporal dementia,amyotrophic lateral sclerosis,and Huntington’s di...Neuronal injury,aging,and cerebrovascular and neurodegenerative diseases such as cerebral infarction,Alzheimer’s disease,Parkinson’s disease,frontotemporal dementia,amyotrophic lateral sclerosis,and Huntington’s disease are characte rized by significant neuronal loss.Unfo rtunately,the neurons of most mammals including humans do not possess the ability to self-regenerate.Replenishment of lost neurons becomes an appealing therapeutic strategy to reve rse the disease phenotype.Transplantation of pluripotent neural stem cells can supplement the missing neurons in the brain,but it carries the risk of causing gene mutation,tumorigenesis,severe inflammation,and obstructive hydrocephalus induced by brain edema.Conversion of neural or non-neural lineage cells into functional neurons is a promising strategy for the diseases involving neuron loss,which may overcome the above-mentioned disadvantages of neural stem cell therapy.Thus far,many strategies to transfo rm astrocytes,fibroblasts,microglia,Muller glia,NG2 cells,and other glial cells to mature and functional neurons,or for the conversion between neuronal subtypes have been developed thro ugh the regulation of transcription factors,polypyrimidine tra ct binding protein 1(PTBP1),and small chemical molecules or are based on a combination of several factors and the location in the central nervous system.However,some recent papers did not obtain expected results,and discrepancies exist.Therefore,in this review,we discuss the history of neuronal transdifferentiation,summarize the strategies for neuronal replenishment and conversion from glia,especially astrocytes,and point out that biosafety,new strategies,and the accurate origin of the truly co nverted neurons in vivo should be focused upon in future studies.It also arises the attention of replenishing the lost neurons from glia by gene therapies such as up-regulation of some transc ription factors or downregulation of PTBP1 or drug interfe rence therapies.展开更多
Sesame(Sesamum indicum L.)is an ancient oilseed crop of the Pedaliaceae family with high oil content and potential health benefits.SHI RELATED SEQUENCE(SRS)proteins are the transcription factors(TFs)specific to plants...Sesame(Sesamum indicum L.)is an ancient oilseed crop of the Pedaliaceae family with high oil content and potential health benefits.SHI RELATED SEQUENCE(SRS)proteins are the transcription factors(TFs)specific to plants that contain RING-like zinc finger domain and are associated with the regulation of several physiological and biochemical processes.They also play vital roles in plant growth and development such as root formation,leaf development,floral development,hormone biosynthesis,signal transduction,and biotic and abiotic stress responses.Nevertheless,the SRS gene family was not reported in sesame yet.In this study,identification,molecular characterization,phylogenetic relationship,cis-acting regulatory elements,protein-protein interaction,syntenic relationship,duplication events and expression pattern of SRS genes were analyzed in S.indicum.We identified total six SiSRS genes on seven different linkage groups in the S.indicum genome by comparing with the other species,including the model plant Arabidopsis thaliana.The SiSRS genes showed variation in their structure like2–5 exons and 1–4 introns.Like other species,SiSRS proteins also contained‘RING-like zinc finger'and‘LRP1'domains.Then,the SiSRS genes were clustered into subclasses via phylogenetic analysis with proteins of S.indicum,A.thaliana,and some other plant species.The cis-acting regulatory elements analysis revealed that the promoter region of SiSRS4(SIN_1011561)showed the highest 13 and 16 elements for light-and phytohormone-responses whereas,SiSRS1(SIN_1015187)showed the highest 15 elements for stress-response.The ABREs,or ABA-responsive elements,were found in a maximum of 8 copies in the SiSRS3(SIN 1009100).Moreover,the available RNA-seq based expression of SiSRS genes revealed variation in expression patterns between stress-treated and non-treated samples,especially in drought and salinity conditions in.S.indicum.Two SiSRS genes like SiSRS1(SIN_1015187)and SiSRS5(SIN_1021065),also exhibited variable expression patterns between control vs PEG-treated sesame root samples and three SiSRS genes,including SiSRS1(SIN_1015187),SiSRS2(SIN_1003328)and SiSRS5(SIN_1021065)were responsive to salinity treatments.The present outcomes will encourage more research into the gene expression and functionality analysis of SiSRS genes in S.indicum and other related species.展开更多
BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has sho...BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy.展开更多
Activated G-protein-coupled receptor 39(GPR39)has been shown to attenuate inflammation by interacting with sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α).However,whether GPR3...Activated G-protein-coupled receptor 39(GPR39)has been shown to attenuate inflammation by interacting with sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α).However,whether GPR39 attenuates neuropathic pain remains unclear.In this study,we established a Sprague-Dawley rat model of spared nerve injury-induced neuropathic pain and found that GPR39 expression was significantly decreased in neurons and microglia in the spinal dorsal horn compared with sham-operated rats.Intrathecal injection of TC-G 1008,a specific agonist of GPR39,significantly alleviated mechanical allodynia in the rats with spared nerve injury,improved spinal cord mitochondrial biogenesis,and alleviated neuroinflammation.These changes were abolished by GPR39 small interfering RNA(siRNA),Ex-527(SIRT1 inhibitor),and PGC-1αsiRNA.Taken together,these findings show that GPR39 activation ameliorates mechanical allodynia by activating the SIRT1/PGC-1αpathway in rats with spared nerve injury.展开更多
Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangle...Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.展开更多
Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regu...Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05.展开更多
Gamma-aminobutyric acid(GABA),widely existing in different organisms,is rapidly accumulated in plants in response to environmental stresses.The main biosynthesis and degradation pathways of GABA constitute the GABA sh...Gamma-aminobutyric acid(GABA),widely existing in different organisms,is rapidly accumulated in plants in response to environmental stresses.The main biosynthesis and degradation pathways of GABA constitute the GABA shunt,which is tied to the tricarboxylic acid(TCA)cycle.GABA transaminase(GABA-T)and succinate semialdehyde dehydrogenase(SSADH)are two essential enzymes for the GABA degradation pathway.While there are abundant studies on GABA shunt in higher plants at the physiological and genetic levels,research on its role in microalgae remains limited.This study aimed at exploring the function of GABA-T and SSADH genes in Isochrysis zhanjiangensis,an important diet microalga,under different stresses.We cloned two GABA-T genes,IzGABA-T1 and IzGABA-T2,and one SSADH gene IzSSADH from Isochrysis zhanjiangensis and conducted heterologous expression experiments.The results showed that the overexpression of IzGABA-T1 or IzGABA-T2 enhanced the survival rates of yeast transformants under heat or NaCl stress,while the overexpression of IzSSADH improved yeast tolerance to NaCl stress but had no obvious effect on heat stress.Additionally,the results of quantitative real-time polymerase chain reaction(qPCR)showed that IzGABA-T1 transcription increased in the HT(salinity 25,35℃)and LS(salinity 15,25℃)groups.At 24 h,the IzGABA-T2 transcriptions increased in the HT,LS,and HS(salinity 35,25℃)groups,but their transcription levels decreased in all groups at 48 h.IzSSADH transcription increased in the LS group.These results suggest that IzGABA-T1,IzGABA-T2,and IzSSADH are associated with temperature and salinity stresses and possess a certain preference for different stresses.展开更多
Unfavorable environmental cues severely affect crop productivity resulting in significant economic losses to farmers. In plants, multiple regulatory genes, such as the WRKY transcription factor (TF) family, modulate t...Unfavorable environmental cues severely affect crop productivity resulting in significant economic losses to farmers. In plants, multiple regulatory genes, such as the WRKY transcription factor (TF) family, modulate the expression of defense genes. However, the role of the pineapple WRKY genes is poorly understood. Here, we studied the pineapple WRKY gene, AcWRKY28, by generating AcWRKY28 over-expressing transgenic pineapple plants. Overexpression of AcWRKY28 enhanced the salt stress resistance in transgenic pineapple lines. Comparative transcriptome analysis of transgenic and wild-type pineapple plants showed that “plant-pathogen interaction” pathway genes, including 9calcium-dependent protein kinases (CPKs), were up-regulated in AcWRKY28 over-expressing plants. Furthermore, chromatin immunoprecipitation and yeast one-hybrid assays revealed AcCPK12, AcCPK3, AcCPK8, AcCPK1, and AcCPK15 as direct targets of AcWRKY28. Consistently, the study of AcCPK12 over-expressing Arabidopsis lines showed that AcCPK12 enhances salt, drought, and disease resistance. This study shows that AcWRKY28 plays a crucial role in promoting salt stress resistance by activating the expression of AcCPK genes.展开更多
Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,...Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes.This event,conserved in mice,involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset.Furthermore,we identified 282 transcriptional regulators(TRs)that underwent activation or deactivation subsequent to this process.Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes,while secreted ENHO signals may alter metabolic patterns in these cells.Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia(NOA).This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.展开更多
Knowledge of the function of growth-regulating factors(GRFs)in sugarcane(Saccharum officinarum and S.spontaneum)growth and development could assist breeders in selecting desirable plant architectures.However,limited i...Knowledge of the function of growth-regulating factors(GRFs)in sugarcane(Saccharum officinarum and S.spontaneum)growth and development could assist breeders in selecting desirable plant architectures.However,limited information about GRFs is available in Saccharum due to their polyploidy.In this study,22 GRFs were identified in the two species and their conserved domains,gene structures,chromosome location,and synteny were characterized.GRF7 expression varied among tissues and responded to diurnal rhythm.SsGRF7-YFP was localized preferentially in the nucleus and appears to act as a transcriptional cofactor.SsGRF7 positively regulated the size and length of rice leaves,possibly by regulating cell size and plant hormones.Of seven potential transcription factors binding to the SsGRF7 promoter in S.spontaneum,four showed positive expression patterns,and two showed negative expression patterns relative to SsGRF7.展开更多
Regulatory sequences and transposable elements(TEs)account for a large proportion of the genomic sequences of species;however,their roles in gene transcription,especially tissue-specific expression,remain largely unkn...Regulatory sequences and transposable elements(TEs)account for a large proportion of the genomic sequences of species;however,their roles in gene transcription,especially tissue-specific expression,remain largely unknown.Pigs serve as an excellent animal model for studying genomic sequence biology due to the extensive diversity among their wild and domesticated populations.Here,we conducted an integrated analysis using H3K27ac ChIP-seq,H3K4me3 ChIP-seq,and RNA-seq data from 10 different tissues of seven fetuses and eight closely related adult pigs.We aimed to annotate the regulatory elements and TEs to elucidate their associations with histone modifications and mRNA expression across different tissues and developmental stages.Based on correlation analysis between mRNA expression and H3K27ac and H3K4me3 peak activity,results indicated that H3K27ac exhibited stronger associations with gene expression than H3K4me3.Furthermore,1.45%of TEs overlapped with either the H3K27ac or H3K4me3 peaks,with the majority displaying tissue-specific activity.Notably,a TE subfamily(LTR4C_SS),containing binding motifs for SIX1 and SIX4,showed specific enrichment in the H3K27ac peaks of the adult and fetal ovaries.RNA-seq analysis also revealed widespread expression of TEs in the exons or promoters of genes,including 4688 TE-containing transcripts with distinct development stage-specific and tissue-specific expression.Of note,1967 TE-containing transcripts were enriched in the testes.We identified a long terminal repeat(LTR),MLT1F1,acting as a testis-specific alternative promoter in SRPK2(a cell cycle-related protein kinase)in our pig dataset.This element was also conserved in humans and mice,suggesting either an ancient integration of TEs in genes specifically expressed in the testes or parallel evolutionary patterns.Collectively,our findings demonstrate that TEs are deeply embedded in the genome and exhibit important tissue-specific biological functions,particularly in the reproductive organs.展开更多
Lilium are highly economically valuable ornamental plants that are susceptible to Fusarium wilt caused by Fusarium oxysporum.Lilium regale Wilson,a wild lily native to China,is highly resistant to F.oxysporum.In this ...Lilium are highly economically valuable ornamental plants that are susceptible to Fusarium wilt caused by Fusarium oxysporum.Lilium regale Wilson,a wild lily native to China,is highly resistant to F.oxysporum.In this study,a WRKY transcription factor,WRKY11,was isolated from L.regale,and its function during the interaction between L.regale and F.oxysporum was characterized.The ectopic expression of LrWRKY11 in tobacco increased the resistance to F oxysporum,moreover,the transcriptome sequencing and UHPLC-MS/MS analysis indicated that the methyl salicylate and methyl jasmonate levels rose in LrWRKY11 transgenic tobacco,meanwhile,the expression of lignin/lignans biosynthesis-related genes including a dirigent(DiR)was up-regulated.The lignin/lignans contents in LrWRKY11-transgenic tobacco also significantly increased compared with the wild-type tobacco.In addition,the resistance of L.regale scales in which LrWRKY11 expression was silenced by RNAi evidently decreased,and additionally,the expression of lignin/lignans biosynthesis-related genes including LrDIR1 was significantly suppressed.Therefore,LrDIR1 and its promoter(PLrDIR1)sequence containing the W-box element were isolated from L.regale.The interaction assay indicated that LrWRKY11 specifically bound to the W-box element in PLrDIR1 and activated LrDIR1 expression.Additionally,β-glucuronidase activity in the transgenic tobacco co-expressing LrWRKY11/PLrDIR1-β-glucuronidase was higher than that in transgenic tobacco expressing PLrDIR1-β-glucuronidase alone.Furthermore,the ectopic expression of LrDIR1 in tobacco enhanced the resistance to F.oxysporum and increased the lignin/lignans accumulation.In brief,this study revealed that LrWRKY11 positively regulated L.regale resistance to F.oxysporum through interaction with salicylic acid/jasmonic acid signaling pathways and modulating LrDIR1 expression to accumulate lignin/lignans.展开更多
Rosa roxburghii fruit is rich in flavonoids, but little is known about their biosynthetic pathways. In this study, we employed transcriptomics and metabolomics to study changes related to the flavonoids at five differ...Rosa roxburghii fruit is rich in flavonoids, but little is known about their biosynthetic pathways. In this study, we employed transcriptomics and metabolomics to study changes related to the flavonoids at five different stages of R. roxburghii fruit development. Flavonoids and the genes related to their biosynthesis were found to undergo significant changes in abundance across different developmental stages, and numerous quercetin derivatives were identified. We found three gene expression modules that were significantly associated with the abundances of the different flavonoids in R. roxburghii and identified three structural UDP-glycosyltransferase genes directly involved in the synthesis of quercetin derivatives within these modules. In addition, we found that RrBEH4, RrLBD1 and RrPIF8could significantly increase the expression of downstream quercetin derivative biosynthesis genes. Taken together,these results provide new insights into the metabolism of flavonoids and the accumulation of quercetin derivatives in R. roxburghii.展开更多
Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes p...Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes plant salt stress.GsWRKY40 was highly expressed in wild soybean roots and was up-regulated by salt treatment.GsWRKY40 was localized in nucleus and demonstrated DNA-binding activities but without transcriptional activation.Mutation and overexpression of GsWRKY40 altered salt tolerance of Arabidopsis plants.To understand the molecular mechanism of GsWRKY40 in regulating plant salt resistance,we screened a cDNA library and identified a GsWRKY40 interacting protein GsbHLH92 by using yeast two-hybrid approach.The physical interaction of GsWRKY40 and GsbHLH92 was confirmed by co-immunoprecipitation(co-IP),GST pull-down,and bimolecular fluorescence complementation(BiFC)techniques.Intriguingly,co-overexpression of GsWRKY40 and GsbHLH92 resulted in higher salt tolerance and lower ROS levels than overexpression of GsWRKY40 or GsbHLH92 in composite soybean plants,suggesting that GsWRKY40 and GsbHLH92 may synergistically regulate plant salt resistance through inhibiting ROS production.qRT-PCR data indicated that the expression level of GmSPOD1 gene encoding peroxidase was cooperatively regulated by GsWRKY40 and GsbHLH92,which was confirmed by using a dual luciferase report system and yeast one-hybrid experiment.Our study reveals a pathway that GsWRKY40 and GsbHLH92 collaboratively up-regulate plant salt resistance through impeding GmSPOD1 expression and reducing ROS levels,providing a novel perspective on the regulatory mechanisms underlying plant tolerance to abiotic stresses.展开更多
The number of trichomes significantly increased in CRISPR/Cas9-edited BrrTCP4b turnip(Brassica rapa var.rapa)plants.However,the underlying molecular mechanism remains to be uncovered.In this study,we performed the Y2H...The number of trichomes significantly increased in CRISPR/Cas9-edited BrrTCP4b turnip(Brassica rapa var.rapa)plants.However,the underlying molecular mechanism remains to be uncovered.In this study,we performed the Y2H screen using BrrTCP4b as the bait,which unveiled an interaction between BrrTCP4b and BrrTTG1,a pivotal WD40-repeat protein transcription factor in the MYB-bHLH-WD40(MBW)complex.This physical interaction was further validated through bimolecular luciferase complementation and co-immunoprecipitation.Furthermore,it was found that the interaction between BrrTCP4b and BrrTTG1 could inhibit the activity of MBW complex,resulting in decreased expression of BrrGL2,a positive regulator of trichomes development.In contrast,AtTCP4 is known to regulate trichomes development by interacting with AtGL3 in Arabidopsis thaliana.Overall,this study revealed that BrrTCP4b is involved in trichome development by interacting with BrrTTG1 in turnip,indicating a divergence from the mechanisms observed in model plant A.thaliana.The findings contribute to our understanding of the regulatory mechanisms governing trichome development in the non-model plants turnip.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(81973316,82173807)the China Postdoctoral Science Foundation(2020M681914)+1 种基金the Fund from Tianjin Municipal Health Commission(ZC200093)the Open Fund of Tianjin Central Hospital of Obstetrics and Gynecology/Tianjin Key Laboratory of human development and reproductive regulation(2021XHY01)。
文摘Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid with anti-inflammatory and immunoregulatory properties.Therefore,we speculated that API can ameliorate psoriasis,and determined its effect on the development of psoriasis by using imiquimod(IMQ)-induced psoriasis mouse model.Our results showed that API attenuated IMQ-induced phenotypic changes,such as erythema,scaling and epidermal thickening,and improved splenic hyperplasia.Abnormal differentiation of immune cells was restored in API-treated mice.Mechanistically,we revealed that API is a key regulator of signal transducer activator of transcription 3(STAT3).API regulated immune responses by reducing interleukin-23(IL-23)/STAT3/IL-17A axis.Moreover,it suppressed IMQ-caused cell hyperproliferation by inactivating STAT3 through regulation of extracellular signal-regulated kinase 1/2 and nuclear factor-κB(NF-κB)pathway.Furthermore,API reduced expression of inflammatory cytokines through inactivation of NF-κB.Taken together,our study demonstrates that API can ameliorate psoriasis and may be considered as a strategy for psoriasis treatment.
基金supported by grants from Natural Science Foundation Key Program of Fujian Province(2023J02011)National Natural Science Foundation of China(31970281,31671668)+1 种基金a Sino-German Mobility Program funded jointly by National Natural Science Foundation of ChinaGerman Research Foundation(M-0275).
文摘Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating trichome development and salt tolerance in rice.Here we report that knockout of OsSPL10 reduces whereas its overexpression enhances rice resistance to blast disease.OsSPL10 positively regulates chitin-induced immune responses including reactive oxygen species(ROS)burst and callose deposition.We show that OsSPL10 physically associates with OsJAmyb,an important TF involved in jasmonic acid(JA)signaling,and positively regulates its protein stability.We then prove that OsJAmyb positively regulates resistance to blast.Our results reveal a molecular module consisting of OsSPL10 and OsJAmyb that positively regulates blast resistance.
基金supported by the National Key R&D Program of China(2022YFD1200300)the National Nature Science Youth Science Fund Project,China(31801412)+2 种基金the Key R&D Program of Shandong Province,China(2021LZGC026)the Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences,China(CXGC2023G02)the Shandong Provincial Program,China(WST2020011)。
文摘Verticillium dahliae is an important fungal pathogen affecting cotton yield and quality.Therefore,the mining of V.dahlia-resistance genes is urgently needed.Proteases and protease inhibitors play crucial roles in plant defense responses.However,the functions and regulatory mechanisms of the protease inhibitor PR6 gene family remain largely unknown.This study provides a comprehensive analysis of the PR6 gene family in the cotton genome.We performed genome-wide identification and functional characterization of the cotton GhPR6 gene family,which belongs to the potato protease inhibitor I family of inhibitors.Thirty-nine PR6s were identified in Gossypium arboreum,G.raimondii,G.barbadense,and G.hirsutum,and they were clustered into four groups.Based on the analysis of pathogen-induced and Ghlmm transcriptome data,Gh PR6-5b was identified as the key gene for V.dahliae resistance.Virus-induced gene silencing experiments revealed that cotton was more sensitive to V.dahliae V991after PR6-5b silencing.The present study established that GhWRKY75 plays an important role in resistance to Verticillium wilt in cotton by positively regulating GhPR6-5b expression by directly binding to the W-box TTGAC(T/C).Our findings established that GhWRKY75 is a potential candidate for improving cotton resistance to V.dahliae,and provide primary information for further investigations and the development of specific strategies to bolster the defense mechanisms of cotton against V.dahliae.
基金supported by Guangdong Provincial Basic and Applied Basic Research Fund,No.2021A1515011299(to KT)。
文摘Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
基金supported by the Jiangsu Province Natural Science Foundation(Grant No.BK20201492)the Key Medical Research Project of Jiangsu Provincial Health Commission(Grant No.K2019002)the Clinical Capacity Improvement Project of Jiangsu Province People's Hospital(Grant No.JSPH-MA-2021-8).
文摘Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDB39050600(to RL)the National Natural Science Foundation of China,No.81971610(to RL)Beijing Rehabilitation Hospital Introduction of Talent Research Start-up Fund,No.2021R-008(to JZ)。
文摘Neuronal injury,aging,and cerebrovascular and neurodegenerative diseases such as cerebral infarction,Alzheimer’s disease,Parkinson’s disease,frontotemporal dementia,amyotrophic lateral sclerosis,and Huntington’s disease are characte rized by significant neuronal loss.Unfo rtunately,the neurons of most mammals including humans do not possess the ability to self-regenerate.Replenishment of lost neurons becomes an appealing therapeutic strategy to reve rse the disease phenotype.Transplantation of pluripotent neural stem cells can supplement the missing neurons in the brain,but it carries the risk of causing gene mutation,tumorigenesis,severe inflammation,and obstructive hydrocephalus induced by brain edema.Conversion of neural or non-neural lineage cells into functional neurons is a promising strategy for the diseases involving neuron loss,which may overcome the above-mentioned disadvantages of neural stem cell therapy.Thus far,many strategies to transfo rm astrocytes,fibroblasts,microglia,Muller glia,NG2 cells,and other glial cells to mature and functional neurons,or for the conversion between neuronal subtypes have been developed thro ugh the regulation of transcription factors,polypyrimidine tra ct binding protein 1(PTBP1),and small chemical molecules or are based on a combination of several factors and the location in the central nervous system.However,some recent papers did not obtain expected results,and discrepancies exist.Therefore,in this review,we discuss the history of neuronal transdifferentiation,summarize the strategies for neuronal replenishment and conversion from glia,especially astrocytes,and point out that biosafety,new strategies,and the accurate origin of the truly co nverted neurons in vivo should be focused upon in future studies.It also arises the attention of replenishing the lost neurons from glia by gene therapies such as up-regulation of some transc ription factors or downregulation of PTBP1 or drug interfe rence therapies.
文摘Sesame(Sesamum indicum L.)is an ancient oilseed crop of the Pedaliaceae family with high oil content and potential health benefits.SHI RELATED SEQUENCE(SRS)proteins are the transcription factors(TFs)specific to plants that contain RING-like zinc finger domain and are associated with the regulation of several physiological and biochemical processes.They also play vital roles in plant growth and development such as root formation,leaf development,floral development,hormone biosynthesis,signal transduction,and biotic and abiotic stress responses.Nevertheless,the SRS gene family was not reported in sesame yet.In this study,identification,molecular characterization,phylogenetic relationship,cis-acting regulatory elements,protein-protein interaction,syntenic relationship,duplication events and expression pattern of SRS genes were analyzed in S.indicum.We identified total six SiSRS genes on seven different linkage groups in the S.indicum genome by comparing with the other species,including the model plant Arabidopsis thaliana.The SiSRS genes showed variation in their structure like2–5 exons and 1–4 introns.Like other species,SiSRS proteins also contained‘RING-like zinc finger'and‘LRP1'domains.Then,the SiSRS genes were clustered into subclasses via phylogenetic analysis with proteins of S.indicum,A.thaliana,and some other plant species.The cis-acting regulatory elements analysis revealed that the promoter region of SiSRS4(SIN_1011561)showed the highest 13 and 16 elements for light-and phytohormone-responses whereas,SiSRS1(SIN_1015187)showed the highest 15 elements for stress-response.The ABREs,or ABA-responsive elements,were found in a maximum of 8 copies in the SiSRS3(SIN 1009100).Moreover,the available RNA-seq based expression of SiSRS genes revealed variation in expression patterns between stress-treated and non-treated samples,especially in drought and salinity conditions in.S.indicum.Two SiSRS genes like SiSRS1(SIN_1015187)and SiSRS5(SIN_1021065),also exhibited variable expression patterns between control vs PEG-treated sesame root samples and three SiSRS genes,including SiSRS1(SIN_1015187),SiSRS2(SIN_1003328)and SiSRS5(SIN_1021065)were responsive to salinity treatments.The present outcomes will encourage more research into the gene expression and functionality analysis of SiSRS genes in S.indicum and other related species.
基金Supported by 2020 Guangxi Zhuang Autonomous Region Health Care Commission Self-Financing Research Projects,No.Z202000962023 Guangxi University Young and Middle-Aged Teachers’Basic Research Ability Improvement Project,No.2023KY0091+1 种基金National Natural Science Foundation of China,No.82260241the Natural Science Foundation of Guangxi Province,No.2015GXNSFAA139171 and No.2020GXNSFAA259053.
文摘BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy.
基金supported by the National Notural Science Foundation of China,Nos.82071556 and 82271291 (both to WM)
文摘Activated G-protein-coupled receptor 39(GPR39)has been shown to attenuate inflammation by interacting with sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α).However,whether GPR39 attenuates neuropathic pain remains unclear.In this study,we established a Sprague-Dawley rat model of spared nerve injury-induced neuropathic pain and found that GPR39 expression was significantly decreased in neurons and microglia in the spinal dorsal horn compared with sham-operated rats.Intrathecal injection of TC-G 1008,a specific agonist of GPR39,significantly alleviated mechanical allodynia in the rats with spared nerve injury,improved spinal cord mitochondrial biogenesis,and alleviated neuroinflammation.These changes were abolished by GPR39 small interfering RNA(siRNA),Ex-527(SIRT1 inhibitor),and PGC-1αsiRNA.Taken together,these findings show that GPR39 activation ameliorates mechanical allodynia by activating the SIRT1/PGC-1αpathway in rats with spared nerve injury.
基金supported by a grant from Key Laboratory of Alzheimer's Disease of Zhejiang Province,Institute of Aging,Wenzhou Medical University,No.ZJAD-2021002(to ZW)。
文摘Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.
基金supported by the Project from the Ministry of Agriculture of China for Transgenic Research(2014ZX0800927B)the National Natural Science Foundation of China(31871667).
文摘Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY22C190001)the Natural Science Foundation of Ningbo Government(No.2021J114)+3 种基金the Ningbo Science and Technology Research Projects,China(No.2019B10006)the Zhejiang Provincial Department of Education Scientific Research Project(No.Y202249030)the Earmarked Fund for CARS-49partly sponsored by K.C.Wong Magna Fund in Ningbo University.
文摘Gamma-aminobutyric acid(GABA),widely existing in different organisms,is rapidly accumulated in plants in response to environmental stresses.The main biosynthesis and degradation pathways of GABA constitute the GABA shunt,which is tied to the tricarboxylic acid(TCA)cycle.GABA transaminase(GABA-T)and succinate semialdehyde dehydrogenase(SSADH)are two essential enzymes for the GABA degradation pathway.While there are abundant studies on GABA shunt in higher plants at the physiological and genetic levels,research on its role in microalgae remains limited.This study aimed at exploring the function of GABA-T and SSADH genes in Isochrysis zhanjiangensis,an important diet microalga,under different stresses.We cloned two GABA-T genes,IzGABA-T1 and IzGABA-T2,and one SSADH gene IzSSADH from Isochrysis zhanjiangensis and conducted heterologous expression experiments.The results showed that the overexpression of IzGABA-T1 or IzGABA-T2 enhanced the survival rates of yeast transformants under heat or NaCl stress,while the overexpression of IzSSADH improved yeast tolerance to NaCl stress but had no obvious effect on heat stress.Additionally,the results of quantitative real-time polymerase chain reaction(qPCR)showed that IzGABA-T1 transcription increased in the HT(salinity 25,35℃)and LS(salinity 15,25℃)groups.At 24 h,the IzGABA-T2 transcriptions increased in the HT,LS,and HS(salinity 35,25℃)groups,but their transcription levels decreased in all groups at 48 h.IzSSADH transcription increased in the LS group.These results suggest that IzGABA-T1,IzGABA-T2,and IzSSADH are associated with temperature and salinity stresses and possess a certain preference for different stresses.
基金supported by the Natural Science Foundation of Guangxi (Grant No.2022GXNSFBA035523)the China Postdoctoral Science Foundation (Grant No.2022MD713731)+1 种基金the Science and Technology Major Project of Guangxi Gui Ke (Grant No.AA22067096)the project of Guangxi featured fruit innovation team on pineapple breeding and cultivation post under national modern agricultural industry technology system (Grant No.nycytxgxcxtd-17-05)。
文摘Unfavorable environmental cues severely affect crop productivity resulting in significant economic losses to farmers. In plants, multiple regulatory genes, such as the WRKY transcription factor (TF) family, modulate the expression of defense genes. However, the role of the pineapple WRKY genes is poorly understood. Here, we studied the pineapple WRKY gene, AcWRKY28, by generating AcWRKY28 over-expressing transgenic pineapple plants. Overexpression of AcWRKY28 enhanced the salt stress resistance in transgenic pineapple lines. Comparative transcriptome analysis of transgenic and wild-type pineapple plants showed that “plant-pathogen interaction” pathway genes, including 9calcium-dependent protein kinases (CPKs), were up-regulated in AcWRKY28 over-expressing plants. Furthermore, chromatin immunoprecipitation and yeast one-hybrid assays revealed AcCPK12, AcCPK3, AcCPK8, AcCPK1, and AcCPK15 as direct targets of AcWRKY28. Consistently, the study of AcCPK12 over-expressing Arabidopsis lines showed that AcCPK12 enhances salt, drought, and disease resistance. This study shows that AcWRKY28 plays a crucial role in promoting salt stress resistance by activating the expression of AcCPK genes.
基金supported by the National Natural Science Foundation of China(82271645)National Key Research and Development Program of China(2021YFC2700200 to F.S.)。
文摘Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes.This event,conserved in mice,involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset.Furthermore,we identified 282 transcriptional regulators(TRs)that underwent activation or deactivation subsequent to this process.Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes,while secreted ENHO signals may alter metabolic patterns in these cells.Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia(NOA).This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.
基金funded by the National Key Research and Development Program(2021YFF1000101 and 2021YFF1000104)the National Natural Science Foundation of China(32272196)the Sugarcane Research Foundation of Guangxi University(2022GZB007)。
文摘Knowledge of the function of growth-regulating factors(GRFs)in sugarcane(Saccharum officinarum and S.spontaneum)growth and development could assist breeders in selecting desirable plant architectures.However,limited information about GRFs is available in Saccharum due to their polyploidy.In this study,22 GRFs were identified in the two species and their conserved domains,gene structures,chromosome location,and synteny were characterized.GRF7 expression varied among tissues and responded to diurnal rhythm.SsGRF7-YFP was localized preferentially in the nucleus and appears to act as a transcriptional cofactor.SsGRF7 positively regulated the size and length of rice leaves,possibly by regulating cell size and plant hormones.Of seven potential transcription factors binding to the SsGRF7 promoter in S.spontaneum,four showed positive expression patterns,and two showed negative expression patterns relative to SsGRF7.
基金supported by the National Natural Science Foundation of China(32160781)。
文摘Regulatory sequences and transposable elements(TEs)account for a large proportion of the genomic sequences of species;however,their roles in gene transcription,especially tissue-specific expression,remain largely unknown.Pigs serve as an excellent animal model for studying genomic sequence biology due to the extensive diversity among their wild and domesticated populations.Here,we conducted an integrated analysis using H3K27ac ChIP-seq,H3K4me3 ChIP-seq,and RNA-seq data from 10 different tissues of seven fetuses and eight closely related adult pigs.We aimed to annotate the regulatory elements and TEs to elucidate their associations with histone modifications and mRNA expression across different tissues and developmental stages.Based on correlation analysis between mRNA expression and H3K27ac and H3K4me3 peak activity,results indicated that H3K27ac exhibited stronger associations with gene expression than H3K4me3.Furthermore,1.45%of TEs overlapped with either the H3K27ac or H3K4me3 peaks,with the majority displaying tissue-specific activity.Notably,a TE subfamily(LTR4C_SS),containing binding motifs for SIX1 and SIX4,showed specific enrichment in the H3K27ac peaks of the adult and fetal ovaries.RNA-seq analysis also revealed widespread expression of TEs in the exons or promoters of genes,including 4688 TE-containing transcripts with distinct development stage-specific and tissue-specific expression.Of note,1967 TE-containing transcripts were enriched in the testes.We identified a long terminal repeat(LTR),MLT1F1,acting as a testis-specific alternative promoter in SRPK2(a cell cycle-related protein kinase)in our pig dataset.This element was also conserved in humans and mice,suggesting either an ancient integration of TEs in genes specifically expressed in the testes or parallel evolutionary patterns.Collectively,our findings demonstrate that TEs are deeply embedded in the genome and exhibit important tissue-specific biological functions,particularly in the reproductive organs.
基金National Natural Sciences Foundation of China(31760586).
文摘Lilium are highly economically valuable ornamental plants that are susceptible to Fusarium wilt caused by Fusarium oxysporum.Lilium regale Wilson,a wild lily native to China,is highly resistant to F.oxysporum.In this study,a WRKY transcription factor,WRKY11,was isolated from L.regale,and its function during the interaction between L.regale and F.oxysporum was characterized.The ectopic expression of LrWRKY11 in tobacco increased the resistance to F oxysporum,moreover,the transcriptome sequencing and UHPLC-MS/MS analysis indicated that the methyl salicylate and methyl jasmonate levels rose in LrWRKY11 transgenic tobacco,meanwhile,the expression of lignin/lignans biosynthesis-related genes including a dirigent(DiR)was up-regulated.The lignin/lignans contents in LrWRKY11-transgenic tobacco also significantly increased compared with the wild-type tobacco.In addition,the resistance of L.regale scales in which LrWRKY11 expression was silenced by RNAi evidently decreased,and additionally,the expression of lignin/lignans biosynthesis-related genes including LrDIR1 was significantly suppressed.Therefore,LrDIR1 and its promoter(PLrDIR1)sequence containing the W-box element were isolated from L.regale.The interaction assay indicated that LrWRKY11 specifically bound to the W-box element in PLrDIR1 and activated LrDIR1 expression.Additionally,β-glucuronidase activity in the transgenic tobacco co-expressing LrWRKY11/PLrDIR1-β-glucuronidase was higher than that in transgenic tobacco expressing PLrDIR1-β-glucuronidase alone.Furthermore,the ectopic expression of LrDIR1 in tobacco enhanced the resistance to F.oxysporum and increased the lignin/lignans accumulation.In brief,this study revealed that LrWRKY11 positively regulated L.regale resistance to F.oxysporum through interaction with salicylic acid/jasmonic acid signaling pathways and modulating LrDIR1 expression to accumulate lignin/lignans.
基金supported in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the State Key Laboratory of Crop Genetics and Germplasm Enhancement,China(ZW201813)。
文摘Rosa roxburghii fruit is rich in flavonoids, but little is known about their biosynthetic pathways. In this study, we employed transcriptomics and metabolomics to study changes related to the flavonoids at five different stages of R. roxburghii fruit development. Flavonoids and the genes related to their biosynthesis were found to undergo significant changes in abundance across different developmental stages, and numerous quercetin derivatives were identified. We found three gene expression modules that were significantly associated with the abundances of the different flavonoids in R. roxburghii and identified three structural UDP-glycosyltransferase genes directly involved in the synthesis of quercetin derivatives within these modules. In addition, we found that RrBEH4, RrLBD1 and RrPIF8could significantly increase the expression of downstream quercetin derivative biosynthesis genes. Taken together,these results provide new insights into the metabolism of flavonoids and the accumulation of quercetin derivatives in R. roxburghii.
基金financially supported by the National Key Research and Development Program of China(2021YFD120110402)the National Natural Science Foundation of China(32272048,32272017)the Natural Science Foundation of Heilongjiang Province(LH2022C019)。
文摘Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes plant salt stress.GsWRKY40 was highly expressed in wild soybean roots and was up-regulated by salt treatment.GsWRKY40 was localized in nucleus and demonstrated DNA-binding activities but without transcriptional activation.Mutation and overexpression of GsWRKY40 altered salt tolerance of Arabidopsis plants.To understand the molecular mechanism of GsWRKY40 in regulating plant salt resistance,we screened a cDNA library and identified a GsWRKY40 interacting protein GsbHLH92 by using yeast two-hybrid approach.The physical interaction of GsWRKY40 and GsbHLH92 was confirmed by co-immunoprecipitation(co-IP),GST pull-down,and bimolecular fluorescence complementation(BiFC)techniques.Intriguingly,co-overexpression of GsWRKY40 and GsbHLH92 resulted in higher salt tolerance and lower ROS levels than overexpression of GsWRKY40 or GsbHLH92 in composite soybean plants,suggesting that GsWRKY40 and GsbHLH92 may synergistically regulate plant salt resistance through inhibiting ROS production.qRT-PCR data indicated that the expression level of GmSPOD1 gene encoding peroxidase was cooperatively regulated by GsWRKY40 and GsbHLH92,which was confirmed by using a dual luciferase report system and yeast one-hybrid experiment.Our study reveals a pathway that GsWRKY40 and GsbHLH92 collaboratively up-regulate plant salt resistance through impeding GmSPOD1 expression and reducing ROS levels,providing a novel perspective on the regulatory mechanisms underlying plant tolerance to abiotic stresses.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,Pan-Third Pole Environment Study for a Green Silk Road(Pan-TPE)(XDA2004010306)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0502)Science and Technology Program of Xizang Autonomous Region(XZ202001ZY0003G).
文摘The number of trichomes significantly increased in CRISPR/Cas9-edited BrrTCP4b turnip(Brassica rapa var.rapa)plants.However,the underlying molecular mechanism remains to be uncovered.In this study,we performed the Y2H screen using BrrTCP4b as the bait,which unveiled an interaction between BrrTCP4b and BrrTTG1,a pivotal WD40-repeat protein transcription factor in the MYB-bHLH-WD40(MBW)complex.This physical interaction was further validated through bimolecular luciferase complementation and co-immunoprecipitation.Furthermore,it was found that the interaction between BrrTCP4b and BrrTTG1 could inhibit the activity of MBW complex,resulting in decreased expression of BrrGL2,a positive regulator of trichomes development.In contrast,AtTCP4 is known to regulate trichomes development by interacting with AtGL3 in Arabidopsis thaliana.Overall,this study revealed that BrrTCP4b is involved in trichome development by interacting with BrrTTG1 in turnip,indicating a divergence from the mechanisms observed in model plant A.thaliana.The findings contribute to our understanding of the regulatory mechanisms governing trichome development in the non-model plants turnip.