Background:SCNT(somatic cell nuclear transfer)is of great significance to biological research and also to the livestock breeding.However,the survival rate of the SCNT cloned animals is relatively low compared to other...Background:SCNT(somatic cell nuclear transfer)is of great significance to biological research and also to the livestock breeding.However,the survival rate of the SCNT cloned animals is relatively low compared to other transgenic methods.This indicates the potential epigenetic variations between them.DNA methylation is a key marker of mammalian epigenetics and its alterations will lead to phenotypic differences.In this study,ASMT(acetylserotonin-Omethyltransferase)ovarian overexpression transgenic goat was produced by using SCNT.To investigate whether there are epigenetic differences between cloned and WT(wild type)goats,WGBS(whole-genome bisulfite sequencing)was used to measure the whole-genome methylation of these animals.Results:It is observed that the different m Cp G sites are mainly present in the intergenic and intronic regions between cloned and WT animals,and their CG-type methylation sites are strongly correlated.DMR(differentially methylated region)lengths are located around 1000 bp,mainly distributed in the exonic,intergenic and intronic functional domains.A total of 56 and 36 DMGs(differentially methylated genes)were identified by GO and KEGG databases,respectively.Functional annotation showed that DMGs were enriched in biological-process,cellularcomponent,molecular-function and other signaling pathways.A total of 10 identical genes related to growth and development were identified in GO and KEGG databases.Conclusion:The differences in methylation genes among the tested animals have been identified.A total of 10 DMGs associated with growth and development were identified between cloned and WT animals.The results indicate that the differential patterns of DNA methylation between the cloned and WT goats are probably caused by the SCNT.These novel observations will help us to further identify the unveiled mechanisms of somatic cell cloning technology,particularly in goats.展开更多
The current study was undertaken to evaluate the possibility of producing a human pro-insulin transgenic cow by means of somatic cell nuclear transfer (SCNT). A double selection system, Neomycin resistance (Neo^r)...The current study was undertaken to evaluate the possibility of producing a human pro-insulin transgenic cow by means of somatic cell nuclear transfer (SCNT). A double selection system, Neomycin resistance (Neo^r) gene and enhanced green fluorescent protein (EGFP) gene linked through an inner ribosomal entry site (IRES) sequence directed by a Cytomegalovirus (CMV) promoter, was used for enrichment and selection of the transgenic cells and preimplantation embryos. Transgenes were introduced into bovine fetal fibroblast cells (BFF) cultured in vitro through electroporation (900 V/cm, 5 ms). Transgenic bovine fibroblast cells (TBF) were enriched through addition of G418 in culture medium (800 μg/mL). Before being used as a nuclear donor, the TBF cells were either cultured in normal conditions (10% FBS) or treated with serum starvation (0.5% FBS for 2-4 days) followed by 10 hours recovery for G1 phase synchronization. Transgenic cloned embryos were produced through GFP-expressing cell selection and SCNT. The results were the percentage of blastocyst development following SCNT was lower using TBF than BFF cells (23.2% VS 35.2%, P 〈 0.05). No difference in the percentage of cloned blastocysts between the two groups of transgenic nuclear donor of normal and starvation cultures were observed (23.2% VS 18.9%, P 〉 0.05). Two to four GFP-expressing blastocysts were transferred into the uterus of each synchronised recipient. One pregnancy from of seven recipients (21 embryos) was confirmed by rectum palpation 60 days after embryo transfer and one recipient has given birth to a calf at term. PCR and DNA sequencing analysis confirmed that the calf was produced using human proinsulin transgenic animal.展开更多
Transfer cells (TCs) are specialized cells exhibiting invaginated wall ingrowths (Wls), thereby amplifying their plasma membrane surface area (PMSA) and hence the capacity to transport nutrients. However, it rem...Transfer cells (TCs) are specialized cells exhibiting invaginated wall ingrowths (Wls), thereby amplifying their plasma membrane surface area (PMSA) and hence the capacity to transport nutrients. However, it remains unknown as to whether TCs play a role in biomass yield increase during evolution or domestication. Here, we examine this issue from a comparative evolutionary perspective. The cultivated tetraploid AD genome species of cotton and its A and D genome diploid progenitors displayed high, medium, and low seed and fiber biomass yield, respectively. In all three species, cells of the innermost layer of the seed coat juxtaposed to the filial tissues trans-differentiated to a TC morphology. Electron microscopic analyses revealed that these TCs are characterized by sequential formation of flange and reticulate Wls during the phase of rapid increase in seed biomass. Significantly, TCs from the tetraploid species developed substantially more flange and reticulate Wls and exhibited a higher degree of reticulate WI formation than their progenitors. Consequently, the estimated PMSA of TCs of the tetraploid species was about 4 and 70 times higher than that of TCs of the A and D genome progenitors, respectively, which correlates positively with seed and fiber biomass yield. Further, TCs with extensive Wls in the tetraploid species had much stronger expression of sucrose synthase, a key enzyme involved in TC Wl formation and function, than those from the A and D progenitors. The analyses provide a set of novel evidence that the development of TC Wls may play an important role in the increase of seed and fiber biomass yield through polyploidization during evolution.展开更多
[Objective] The aim of this study is to understand the effects of donor cell type,embryo stage,number and transfer position on the efficiency of goat transgenic clone.[Method] Using somatic cell nuclear transfer techn...[Objective] The aim of this study is to understand the effects of donor cell type,embryo stage,number and transfer position on the efficiency of goat transgenic clone.[Method] Using somatic cell nuclear transfer technology,the single goat fetal fibroblasts(GFF)and mammary gland epithelial cells(GMGE)harboring human lactoferrin(hLF)gene were transferred to the enucleated oocyte.Reconstructed karyoplast-cytoplast couplets were fused,activated,and cultured in vitro.Embryos at 2-8 cell stage were transferred into oviduct of synchronized recipients,and blastocysts were transferred into uterine horn.[Result] The pregnancy rate was similar between GFF and GMGE(oviduct transfer:26.47% vs.20.00%),and between oviduct transfer and uterine horn transfer(26.47% vs.25.00%)for GFF group;pregnancy rate in the group with the mean number of embryo transferred per recipient of 21.2 was significantly higher than in those the 5.93 group and 9.64 group(40.00% vs.26.67% and 21.43%).[Conclusion] These results indicate that pregnancy rate of goat transgenic clone couldn't be affected by donor cell type,embryo stage and transfer position but be done by the number of embryo transferred per recipient.In addition,the study also suggests the feasibility of making transgenic goat using GMGE as donor cells.展开更多
The inter-cellular translocation of nutrients in plant is mediated by highly specialized transfer cells (TCs). TCs share similar functional and structural features across a wide range of plant species, including loc...The inter-cellular translocation of nutrients in plant is mediated by highly specialized transfer cells (TCs). TCs share similar functional and structural features across a wide range of plant species, including location at plant exchange surfaces, rich in secondary wall ingrowths, facilitation of nutrient flow, and passage of select molecules. The fate of endosperm TCs is determined in the TC fate acquisition stage (TCF), before the structure features are formed in the TC differentiation stage (TCD). At present, the molecular basis of TC development in plants remains largely unknown. In this review, we summarize the important roles of the signaling molecules in different development phases, such as sugars in TCF and phytohormones in TCD, and discuss the genetic and epigenetic factors, including TC-specific genes and endogenous plant peptides, and their crosstalk with these signaling molecules as a complex regulatory network in regulation of TC develonment in olants.展开更多
To solve the problem of immune incompatibility, nuclear transplantation has been envisaged as a means to produce cells or tissues for human autologous transplantation. Here we have derived embryonic stem cells by the ...To solve the problem of immune incompatibility, nuclear transplantation has been envisaged as a means to produce cells or tissues for human autologous transplantation. Here we have derived embryonic stem cells by the transfer of human somatic nuclei into rabbit oocytes. The number of blastocysts that developed from the fused nuclear transfer was comparable among nuclear donors at ages of 5, 42, 52 and 60 years, and nuclear transfer (NT) embryonic stem cells (ntES cells) were subsequently derived from each of the four age groups. These results suggest that human somatic nuclei can form ntES cells independent of the age of the donor. The derived ntES cells are human based on karyotype, isogenicity, in situ hybridization, PCR and immunocytochemistry with probes that distinguish between the various species. The ntES cells maintain the capability of sustained growth in an undifferentiated state, and form embryoid bodies, which, on further induction, give rise to cell types such as neuron and muscle, as well as mixed cell populations that express markers representative of all three germ layers. Thus, ntES cells derived from human somatic cells by NT to rabbit eggs retain phenotypes similar to those of conventional human ES cells, including the ability to undergo multilineage cellular differentiation.展开更多
Summary: Somatic cell nucleus transfer (SCNT) has been considered the most effective method for conserving endangered animals and expanding the quantity of adult animal models. Bama miniature pigs are genetically s...Summary: Somatic cell nucleus transfer (SCNT) has been considered the most effective method for conserving endangered animals and expanding the quantity of adult animal models. Bama miniature pigs are genetically stable and share similar biological features to humans. These pigs have been used to establish animal models for human diseases, and for many other applications. However, there is a pan- city of studies on the effect of ear fibroblasts derived from different age of adult Bama miniature pigs on nucleus transfer (NT). The present study examined the NT efficiency of ear fibroblasts from fetal, new- born, 1-, 2-, 4-, 6-, 12-month-old miniature pigs by using trypan blue staining, flow cytometry and NT technique, etc., and the cell biological function and SCNT efficiency were compared between groups. The results showed that ear fibroblasts grew well after passage in each group. Spindle-shaped cells ini- tially predominated, and gradually declined with increase of culture time and replaced by polygonal cells. Irregular cell growth occurred in the 2-month-old group and the elder groups. The growth curves of the ear fibroblasts were "S-shaped" in different age groups. The cell proliferation of postnatal ear fi- broblasts, especially those from 2-, 4-, 6-, 12-month-old miniature pigs was significantly different from that of fetus ear fibroblasts (P〈0.05 or P〈0.01). Two-month- and 4-month-old ear fibroblasts had a sig- nificantly higher proportion of G1 stage cells (85% to 91%) than those at 6 and 12 months (66% to 74%, P〈0.01). The blastocyst rate of reconstructed embryos originating from newborn, 1-, 2-, 4-month-old donor pigs was 6.06% to 7.69% with no significant difference from that in fetus fibroblast group (8.06%). It was concluded that 〈4-month-old adult Bama miniature pigs represent a better donor cell resource than elder pigs.展开更多
Mitochondrial dysfunction in neurons has been implicated in hypoxia-ischemia-induced brain injury.Although mesenchymal stem cell therapy has emerged as a novel treatment for this pathology,the mechanisms are not fully...Mitochondrial dysfunction in neurons has been implicated in hypoxia-ischemia-induced brain injury.Although mesenchymal stem cell therapy has emerged as a novel treatment for this pathology,the mechanisms are not fully understood.To address this issue,we first co-cultured 1.5×10^5 PC12 cells with mesenchymal stem cells that were derived from induced pluripotent stem cells at a ratio of 1:1,and then intervened with cobalt chloride(CoCl2)for 24 hours.Reactive oxygen species in PC12 cells was measured by Mito-sox.Mitochondrial membrane potential(ΔΨm)in PC12 cells was determined by JC-1 staining.Apoptosis of PC12 cells was detected by terminal deoxynucleotidal transferase-mediated dUTP nick end-labeling staining.Mitochondrial morphology in PC12 cells was examined by transmission electron microscopy.Transfer of mitochondria from the mesenchymal stem cells derived from induced pluripotent stem cells to damaged PC12 cells was measured by flow cytometry.Mesenchymal stem cells were induced from pluripotent stem cells by lentivirus infection containing green fluorescent protein in mitochondria.Then they were co-cultured with PC12 cells in Transwell chambers and treated with CoCl2 for 24 hours to detect adenosine triphosphate level in PC12 cells.CoCl2-induced PC12 cell damage was dose-dependent.Co-culture with mesenchymal stem cells significantly reduced apoptosis and restoredΔΨm in the injured PC12 cells under CoCl2 challenge.Co-culture with mesenchymal stem cells ameliorated mitochondrial swelling,the disappearance of cristae,and chromatin margination in the injured PC12 cells.After direct co-culture,mitochondrial transfer from the mesenchymal stem cells stem cells to PC12 cells was detected via formed tunneling nanotubes between these two types of cells.The transfer efficiency was greatly enhanced in the presence of CoCl2.More importantly,inhibition of tunneling nanotubes partially abrogated the beneficial effects of mesenchymal stem cells on CoCl2-induced PC12 cell injury.Mesenchymal stem cells reduced CoCl2-induced PC12 cell injury and these effects were in part due to efficacious mitochondrial transfer.展开更多
This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (St...This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.展开更多
The effect of transforming growth factor β 1 (TGF β 1 ) gene transfection on the proliferation of bone marrow derived mesenchymal stem cells (MSC S ) and the mechanism was investigated to provide basi...The effect of transforming growth factor β 1 (TGF β 1 ) gene transfection on the proliferation of bone marrow derived mesenchymal stem cells (MSC S ) and the mechanism was investigated to provide basis for accelerating articular cartilage repairing using molecular tissue engineering technology. TGF β 1 gene at different doses was transduced into the rat bone marrow derived MSCs to examine the effects of TGF β 1 gene transfection on MSCs DNA synthesis, cell cycle kinetics and the expression of proliferating cell nuclear antigen (PCNA). The results showed that 3 μl lipofectamine mediated 1 μg TGF β 1 gene transfection could effectively promote the proliferation of MSCs best; Under this condition (DNA/Lipofectamine=1μg/3μl), flow cytometry and immunohistochemical analyses revealed a significant increase in the 3 H incorporation, DNA content in S phase and the expression of PCNA. Transfection of gene encoding TGF β 1 could induce the cells at G0/G1 phase to S1 phase, modulate the replication of DNA through the enhancement of the PCNA expression, increase the content of DNA at S1 phase and promote the proliferation of MSCs. This new molecular tissue engineering approach could be of potential benefit to enhance the repair of damaged articular cartilage, especially those caused by degenerative joint diseases.展开更多
We have shown previously that high-efficient gene transfer can be attained in primary hematopoietic cells using liposome-mediated gene transfer strategy. In order to examine the stability of gene expression mediated b...We have shown previously that high-efficient gene transfer can be attained in primary hematopoietic cells using liposome-mediated gene transfer strategy. In order to examine the stability of gene expression mediated by this gene transduction protocol, we observed the expression of marker gene in vivo by using bone marrow transplantation (BMT) to engraft lethally irradiated mouse with the genetically modified hematopoietic cells. The results showed that the mouse transplanted with appropriated number of transduced cells remained alive andhealthy. The PCR analysis and G418 selection of the spleen colonies and bone marrow cells isolated from lethally irradiated animals 15 days and 30 days after injection of genetically modified bone marrow cells showed that the progeny cells of the transduced hematopoietic stem cells still contained and expressed the transduced genes, suggesting that the hematopoietic system is at least partially re-constructed by the stem cells with marker gene and that the stable expression of foreign genes in vivo can be attained by using this easy and harmless transduction protocol. These findings provide experimental basis for clinician to further investigate the biology of marrow reconstruction and the mechanism of leukemia relapse after BMT.展开更多
Summary Liposomes have showed many advantages in mediating exogenous gene into many cell types in vitro and in vivo. But few data are available concerning gene transfer into hematopoietic cells. In this report, we d...Summary Liposomes have showed many advantages in mediating exogenous gene into many cell types in vitro and in vivo. But few data are available concerning gene transfer into hematopoietic cells. In this report, we described two-marker genes (Neo R and Lac Z) co-transferred into hematopoietic cells of human and mouse by using liposome in vitro. The efficiency of gene transfer was tested by X- gal staining and observation of colony formation. The X-gal blue staining rate of transduced cells was about (13. 33±2.68)% in human and about (16. 28±2. 95) % in mouse without G418 selection. After G418 selection, the blue cell rate was (46. 06±3. 47)% in human and (43. 45±4. 1)% in mouse, which were markedly higher than those before selection, suggesting that high-efficiency gene transfer and expression could be attained in primary hematopoietic cells using this easy and harmless transduction protocol. At the same time, this protocol provided experimental data for clinicians to in- vestigate the biology of marrow reconstitution and trace the origin of relapse after autologous bone marrow transplantation for the patients with leukemia.展开更多
Alloimmunization was combined with lympho-kine activated killer (LAK) cells to assess its effect on mammary carcinoma in rats. The animals were injected with both irradiated allosplenocytes and syngeneic LAK cells. Me...Alloimmunization was combined with lympho-kine activated killer (LAK) cells to assess its effect on mammary carcinoma in rats. The animals were injected with both irradiated allosplenocytes and syngeneic LAK cells. Metastatic lung nodules were markedly reduced using combined therapy when compared with the transfer of LAK cells or alloimmuni-zation alone. IL-2 activity in the serum of alloim-munized rats could be detected. This activity, maintained in vivo for one week, may be responsible for enhancing the antitumor effect of transferred LAK cells.展开更多
Objective: To investigate retroviral-mediated transfer and expression of human multidrug resistance (MDR) gene MDR1 in leukemic cells. Methods: Human myeloid cells, K562 and NB4, were infected by MDR retrovirus from t...Objective: To investigate retroviral-mediated transfer and expression of human multidrug resistance (MDR) gene MDR1 in leukemic cells. Methods: Human myeloid cells, K562 and NB4, were infected by MDR retrovirus from the producer PA317/HaMDR, and the resistant cells were selected with cytotoxic drug. The transfer and expression of MDR1 gene was analyzed by using polymerase chain reaction (PCR), flow cytometry (FCM) and semisolid colonies cultivation. Results: The resistant cells, K562/MDR and NB4/MDR, in which integration of the exogenous MDR1 gene was confirmed by PCR analysis, displayed a typical MDR phenotype. The expression of MDR1 transgene was detected on truncated as well as full-length transcripts. Moreover, the resistant cells were P-glycoprotein postiive at 78.0% to 98.7% analyzed with FCM. The transduction efficieny in K562 cells was studied on suspension cultures and single-cell colonies. The transduction was more efficient in coculture system (67.9%-72.5%) than in supernatant system (33.1%~46.8%), while growth factors may improve the efficiency. Conclusion: Retrovirus could allow a functional transfer and expression of MDR1 gene in human leukemia cells, and MDR1 might act as a dominant selectable gene for coexpression with the genes of interest in gene therapy.展开更多
To investigate the characteristics of multidrugresistance and transplantation of modified stem/ progenitor cells by multidrugresistant gene (mdr1 gene), we established PA317/MDR1 cell line which producing retroviruse...To investigate the characteristics of multidrugresistance and transplantation of modified stem/ progenitor cells by multidrugresistant gene (mdr1 gene), we established PA317/MDR1 cell line which producing retroviruses by transfecting the retroviral vector PHaMDR1/A into packging cell line PA317 by Lipofectin. The virus titer of the supernatants was 1.2×105 cfu/ml. We transfected the murine hematopietic cells collected from 5FU pretreated mice and they showed the ability to reconstitute the longterm hematopoiesis of preirradiated mice. After 4 months, both of bone marrow cells and peripheral blood cells of transplanted mice still contained mdr1 gene. We also transfered mdr1 gene into human bone marrow CD34+ cells selected by using magnetic cell sorting system. PCR analysis showed that transduced CD34+ cells maintained the mdr1 cDNA. A fraction of CFUGM originated from transfected CD34+ cells had the charactor of resistance to Taxol. It is indicated that mdr1 gene can be transduced into murine and human stem/proginitor cells through retroviral mediated gene transfer and it protects the transfected cells from cytotoxic drugs.展开更多
A single potential step chronoabsorptometric method for the determination of ki- netic parameters of simple quasi-reversible reactions is described.It is verified by determining the kinetic parameters for the electror...A single potential step chronoabsorptometric method for the determination of ki- netic parameters of simple quasi-reversible reactions is described.It is verified by determining the kinetic parameters for the electroreduction of ferricyanide.A long-optical-path electro- chemical cell with a plug-in electrode is used.The thickness of solution layer is 0.55 mm展开更多
Use of germ cells as vectors for transgenesis in mammals has been well developed and offers exciting prospects for experimental and applied biology, agricultural and medical sciences. Such approach is referred to as e...Use of germ cells as vectors for transgenesis in mammals has been well developed and offers exciting prospects for experimental and applied biology, agricultural and medical sciences. Such approach is referred to as either male germ cell mediated gene transfer (MGCMGT) or female germ cell mediated gene transfer (FGCMGT) technique. Sperm-mediated gene transfer (SMGT), including its alternative method, testis-mediated gene transfer (TMGT), becomes an established and reliable method for transgenesis. They have been extensively used for producing transgenic animals. The newly developed approach of FGCMGT, ovary-mediated gene transfer (OMGT) is also a novel and useful tool for efficient transgenesis. This review highlights an overview of the recent progress in germ cell mediated gene transfer techniques, methods developed and mechanisms of nucleic acid uptake by germ cells.展开更多
To investigate whether the TGF β1 plasmid DNA carried by lipofectamine could be introduced into cultured rabbit corneal epithelial cells, specific expression of the plasmid pMAM TGF β1 in the cultured corneal epit...To investigate whether the TGF β1 plasmid DNA carried by lipofectamine could be introduced into cultured rabbit corneal epithelial cells, specific expression of the plasmid pMAM TGF β1 in the cultured corneal epithelial cells was studied. Two days after 12 h of transfection of pMAMTGF β1 mediated by lipofectamine into the cultured corneal epithelial cells, the TGF β1 protein expression specific for pMAMTGF β1 in the cells was detected by means of immunohistochemical staining and the positive rate was 23.37 %. The results suggested that foreign plasmid DNA could be effectively delivered into cultured rabbit corneal epithelial cells by means of lipofectamine, and this will provide a promising method of studying TGF β1 on the mechanism of physiology and pathology concerned with corneal epithelial cells.展开更多
Homeobox A10(Hoxa10) gene is one of the most important candidate genes associated with the reproductive performance of humans and mice. Overexpression of Hoxa10 in mouse endometrium can increase litter size. Moreover,...Homeobox A10(Hoxa10) gene is one of the most important candidate genes associated with the reproductive performance of humans and mice. Overexpression of Hoxa10 in mouse endometrium can increase litter size. Moreover, Hoxa10 plays a key role in regulating the embryo implantation of sows. This study aimed to generate transgenic pigs using Hoxa10 via somatic cell nuclear transfer(SCNT). We established seven Hoxa10-transgenic cell lines, and two of the cell lines were selected as nuclear donors for the transfer. A total of 1 270 cloned embryos were generated and transferred to five surrogate mothers(Landrace×Yorkshire). Eight cloned male piglets were produced including one with cryptorchidism. Six transgenic piglets grew up healthy and produced 56 offspring. Finally, we obtained six transgenic male pigs and 26 transgenic positive offspring that can be used to further study the regulatory mechanism of Hoxa10 on the reproductive performance of pigs.展开更多
基金Key Research and Development Project of Hainan Province(ZDYF2021XDNY174)Science and Technology Major Project of Inner Mongolia(2021ZD0023–1)National Transgenic Key Project of the Ministry of Agriculture of China(2018ZX0800801B)。
文摘Background:SCNT(somatic cell nuclear transfer)is of great significance to biological research and also to the livestock breeding.However,the survival rate of the SCNT cloned animals is relatively low compared to other transgenic methods.This indicates the potential epigenetic variations between them.DNA methylation is a key marker of mammalian epigenetics and its alterations will lead to phenotypic differences.In this study,ASMT(acetylserotonin-Omethyltransferase)ovarian overexpression transgenic goat was produced by using SCNT.To investigate whether there are epigenetic differences between cloned and WT(wild type)goats,WGBS(whole-genome bisulfite sequencing)was used to measure the whole-genome methylation of these animals.Results:It is observed that the different m Cp G sites are mainly present in the intergenic and intronic regions between cloned and WT animals,and their CG-type methylation sites are strongly correlated.DMR(differentially methylated region)lengths are located around 1000 bp,mainly distributed in the exonic,intergenic and intronic functional domains.A total of 56 and 36 DMGs(differentially methylated genes)were identified by GO and KEGG databases,respectively.Functional annotation showed that DMGs were enriched in biological-process,cellularcomponent,molecular-function and other signaling pathways.A total of 10 identical genes related to growth and development were identified in GO and KEGG databases.Conclusion:The differences in methylation genes among the tested animals have been identified.A total of 10 DMGs associated with growth and development were identified between cloned and WT animals.The results indicate that the differential patterns of DNA methylation between the cloned and WT goats are probably caused by the SCNT.These novel observations will help us to further identify the unveiled mechanisms of somatic cell cloning technology,particularly in goats.
文摘The current study was undertaken to evaluate the possibility of producing a human pro-insulin transgenic cow by means of somatic cell nuclear transfer (SCNT). A double selection system, Neomycin resistance (Neo^r) gene and enhanced green fluorescent protein (EGFP) gene linked through an inner ribosomal entry site (IRES) sequence directed by a Cytomegalovirus (CMV) promoter, was used for enrichment and selection of the transgenic cells and preimplantation embryos. Transgenes were introduced into bovine fetal fibroblast cells (BFF) cultured in vitro through electroporation (900 V/cm, 5 ms). Transgenic bovine fibroblast cells (TBF) were enriched through addition of G418 in culture medium (800 μg/mL). Before being used as a nuclear donor, the TBF cells were either cultured in normal conditions (10% FBS) or treated with serum starvation (0.5% FBS for 2-4 days) followed by 10 hours recovery for G1 phase synchronization. Transgenic cloned embryos were produced through GFP-expressing cell selection and SCNT. The results were the percentage of blastocyst development following SCNT was lower using TBF than BFF cells (23.2% VS 35.2%, P 〈 0.05). No difference in the percentage of cloned blastocysts between the two groups of transgenic nuclear donor of normal and starvation cultures were observed (23.2% VS 18.9%, P 〉 0.05). Two to four GFP-expressing blastocysts were transferred into the uterus of each synchronised recipient. One pregnancy from of seven recipients (21 embryos) was confirmed by rectum palpation 60 days after embryo transfer and one recipient has given birth to a calf at term. PCR and DNA sequencing analysis confirmed that the calf was produced using human proinsulin transgenic animal.
文摘Transfer cells (TCs) are specialized cells exhibiting invaginated wall ingrowths (Wls), thereby amplifying their plasma membrane surface area (PMSA) and hence the capacity to transport nutrients. However, it remains unknown as to whether TCs play a role in biomass yield increase during evolution or domestication. Here, we examine this issue from a comparative evolutionary perspective. The cultivated tetraploid AD genome species of cotton and its A and D genome diploid progenitors displayed high, medium, and low seed and fiber biomass yield, respectively. In all three species, cells of the innermost layer of the seed coat juxtaposed to the filial tissues trans-differentiated to a TC morphology. Electron microscopic analyses revealed that these TCs are characterized by sequential formation of flange and reticulate Wls during the phase of rapid increase in seed biomass. Significantly, TCs from the tetraploid species developed substantially more flange and reticulate Wls and exhibited a higher degree of reticulate WI formation than their progenitors. Consequently, the estimated PMSA of TCs of the tetraploid species was about 4 and 70 times higher than that of TCs of the A and D genome progenitors, respectively, which correlates positively with seed and fiber biomass yield. Further, TCs with extensive Wls in the tetraploid species had much stronger expression of sucrose synthase, a key enzyme involved in TC Wl formation and function, than those from the A and D progenitors. The analyses provide a set of novel evidence that the development of TC Wls may play an important role in the increase of seed and fiber biomass yield through polyploidization during evolution.
基金Supported by the National High-tech R&D Program(2004AA213072)the Doctor Fund of Henan University of Science and Technology~~
文摘[Objective] The aim of this study is to understand the effects of donor cell type,embryo stage,number and transfer position on the efficiency of goat transgenic clone.[Method] Using somatic cell nuclear transfer technology,the single goat fetal fibroblasts(GFF)and mammary gland epithelial cells(GMGE)harboring human lactoferrin(hLF)gene were transferred to the enucleated oocyte.Reconstructed karyoplast-cytoplast couplets were fused,activated,and cultured in vitro.Embryos at 2-8 cell stage were transferred into oviduct of synchronized recipients,and blastocysts were transferred into uterine horn.[Result] The pregnancy rate was similar between GFF and GMGE(oviduct transfer:26.47% vs.20.00%),and between oviduct transfer and uterine horn transfer(26.47% vs.25.00%)for GFF group;pregnancy rate in the group with the mean number of embryo transferred per recipient of 21.2 was significantly higher than in those the 5.93 group and 9.64 group(40.00% vs.26.67% and 21.43%).[Conclusion] These results indicate that pregnancy rate of goat transgenic clone couldn't be affected by donor cell type,embryo stage and transfer position but be done by the number of embryo transferred per recipient.In addition,the study also suggests the feasibility of making transgenic goat using GMGE as donor cells.
基金supported by the National Natural Science Foundation of China (Grant No.31300241)
文摘The inter-cellular translocation of nutrients in plant is mediated by highly specialized transfer cells (TCs). TCs share similar functional and structural features across a wide range of plant species, including location at plant exchange surfaces, rich in secondary wall ingrowths, facilitation of nutrient flow, and passage of select molecules. The fate of endosperm TCs is determined in the TC fate acquisition stage (TCF), before the structure features are formed in the TC differentiation stage (TCD). At present, the molecular basis of TC development in plants remains largely unknown. In this review, we summarize the important roles of the signaling molecules in different development phases, such as sugars in TCF and phytohormones in TCD, and discuss the genetic and epigenetic factors, including TC-specific genes and endogenous plant peptides, and their crosstalk with these signaling molecules as a complex regulatory network in regulation of TC develonment in olants.
基金supported by grants from the Major State Basic Research Development Program of China(No.001CB5099)the National High Technology Research and Development Program of China(No.2001AA216121)+3 种基金National Natural Science Foundation of China(No.30040003)Projects of Shanghai Science&Technology Development Foundation(No.99DJ14002,00DJ14033,01DJ14003)the Chinese Academy of Sciences(No.KSCX-2-3-08)Shanghai Municipal Education Commission and by Shanghai Second Medical University
文摘To solve the problem of immune incompatibility, nuclear transplantation has been envisaged as a means to produce cells or tissues for human autologous transplantation. Here we have derived embryonic stem cells by the transfer of human somatic nuclei into rabbit oocytes. The number of blastocysts that developed from the fused nuclear transfer was comparable among nuclear donors at ages of 5, 42, 52 and 60 years, and nuclear transfer (NT) embryonic stem cells (ntES cells) were subsequently derived from each of the four age groups. These results suggest that human somatic nuclei can form ntES cells independent of the age of the donor. The derived ntES cells are human based on karyotype, isogenicity, in situ hybridization, PCR and immunocytochemistry with probes that distinguish between the various species. The ntES cells maintain the capability of sustained growth in an undifferentiated state, and form embryoid bodies, which, on further induction, give rise to cell types such as neuron and muscle, as well as mixed cell populations that express markers representative of all three germ layers. Thus, ntES cells derived from human somatic cells by NT to rabbit eggs retain phenotypes similar to those of conventional human ES cells, including the ability to undergo multilineage cellular differentiation.
基金supported by the grants from the National Natural Science Foundation of China(No.31000546)National High-tech Research & Development Program of China(863 Program)(No.2012AA020603)+1 种基金National Science and Technology Major Project of China(No.2014zx08009-003-006)Rongchang Youth Foundation and Fundamental Research Funds of Southwest University(No.XDJK2012C097)
文摘Summary: Somatic cell nucleus transfer (SCNT) has been considered the most effective method for conserving endangered animals and expanding the quantity of adult animal models. Bama miniature pigs are genetically stable and share similar biological features to humans. These pigs have been used to establish animal models for human diseases, and for many other applications. However, there is a pan- city of studies on the effect of ear fibroblasts derived from different age of adult Bama miniature pigs on nucleus transfer (NT). The present study examined the NT efficiency of ear fibroblasts from fetal, new- born, 1-, 2-, 4-, 6-, 12-month-old miniature pigs by using trypan blue staining, flow cytometry and NT technique, etc., and the cell biological function and SCNT efficiency were compared between groups. The results showed that ear fibroblasts grew well after passage in each group. Spindle-shaped cells ini- tially predominated, and gradually declined with increase of culture time and replaced by polygonal cells. Irregular cell growth occurred in the 2-month-old group and the elder groups. The growth curves of the ear fibroblasts were "S-shaped" in different age groups. The cell proliferation of postnatal ear fi- broblasts, especially those from 2-, 4-, 6-, 12-month-old miniature pigs was significantly different from that of fetus ear fibroblasts (P〈0.05 or P〈0.01). Two-month- and 4-month-old ear fibroblasts had a sig- nificantly higher proportion of G1 stage cells (85% to 91%) than those at 6 and 12 months (66% to 74%, P〈0.01). The blastocyst rate of reconstructed embryos originating from newborn, 1-, 2-, 4-month-old donor pigs was 6.06% to 7.69% with no significant difference from that in fetus fibroblast group (8.06%). It was concluded that 〈4-month-old adult Bama miniature pigs represent a better donor cell resource than elder pigs.
基金supported by the National Natural Science Foundation of China,No.81671882,81471832the Natural Science Foundation of Guangdong Province of China,No.2016A030311039+1 种基金the Science and Technology Foundation of Guangdong Province of China,No.2015A020212012,2017A020224012the Science and Technology Foundation of Guangzhou City of China,No.201707010373(all to XL)
文摘Mitochondrial dysfunction in neurons has been implicated in hypoxia-ischemia-induced brain injury.Although mesenchymal stem cell therapy has emerged as a novel treatment for this pathology,the mechanisms are not fully understood.To address this issue,we first co-cultured 1.5×10^5 PC12 cells with mesenchymal stem cells that were derived from induced pluripotent stem cells at a ratio of 1:1,and then intervened with cobalt chloride(CoCl2)for 24 hours.Reactive oxygen species in PC12 cells was measured by Mito-sox.Mitochondrial membrane potential(ΔΨm)in PC12 cells was determined by JC-1 staining.Apoptosis of PC12 cells was detected by terminal deoxynucleotidal transferase-mediated dUTP nick end-labeling staining.Mitochondrial morphology in PC12 cells was examined by transmission electron microscopy.Transfer of mitochondria from the mesenchymal stem cells derived from induced pluripotent stem cells to damaged PC12 cells was measured by flow cytometry.Mesenchymal stem cells were induced from pluripotent stem cells by lentivirus infection containing green fluorescent protein in mitochondria.Then they were co-cultured with PC12 cells in Transwell chambers and treated with CoCl2 for 24 hours to detect adenosine triphosphate level in PC12 cells.CoCl2-induced PC12 cell damage was dose-dependent.Co-culture with mesenchymal stem cells significantly reduced apoptosis and restoredΔΨm in the injured PC12 cells under CoCl2 challenge.Co-culture with mesenchymal stem cells ameliorated mitochondrial swelling,the disappearance of cristae,and chromatin margination in the injured PC12 cells.After direct co-culture,mitochondrial transfer from the mesenchymal stem cells stem cells to PC12 cells was detected via formed tunneling nanotubes between these two types of cells.The transfer efficiency was greatly enhanced in the presence of CoCl2.More importantly,inhibition of tunneling nanotubes partially abrogated the beneficial effects of mesenchymal stem cells on CoCl2-induced PC12 cell injury.Mesenchymal stem cells reduced CoCl2-induced PC12 cell injury and these effects were in part due to efficacious mitochondrial transfer.
基金Project (No. R-174-000-065-112/303) supported by the NationalUniversity of Singapore
文摘This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.
基金This project was supported by a grant from NationalNatural Science Foundation of China (No. 30 170 2 70 )
文摘The effect of transforming growth factor β 1 (TGF β 1 ) gene transfection on the proliferation of bone marrow derived mesenchymal stem cells (MSC S ) and the mechanism was investigated to provide basis for accelerating articular cartilage repairing using molecular tissue engineering technology. TGF β 1 gene at different doses was transduced into the rat bone marrow derived MSCs to examine the effects of TGF β 1 gene transfection on MSCs DNA synthesis, cell cycle kinetics and the expression of proliferating cell nuclear antigen (PCNA). The results showed that 3 μl lipofectamine mediated 1 μg TGF β 1 gene transfection could effectively promote the proliferation of MSCs best; Under this condition (DNA/Lipofectamine=1μg/3μl), flow cytometry and immunohistochemical analyses revealed a significant increase in the 3 H incorporation, DNA content in S phase and the expression of PCNA. Transfection of gene encoding TGF β 1 could induce the cells at G0/G1 phase to S1 phase, modulate the replication of DNA through the enhancement of the PCNA expression, increase the content of DNA at S1 phase and promote the proliferation of MSCs. This new molecular tissue engineering approach could be of potential benefit to enhance the repair of damaged articular cartilage, especially those caused by degenerative joint diseases.
文摘We have shown previously that high-efficient gene transfer can be attained in primary hematopoietic cells using liposome-mediated gene transfer strategy. In order to examine the stability of gene expression mediated by this gene transduction protocol, we observed the expression of marker gene in vivo by using bone marrow transplantation (BMT) to engraft lethally irradiated mouse with the genetically modified hematopoietic cells. The results showed that the mouse transplanted with appropriated number of transduced cells remained alive andhealthy. The PCR analysis and G418 selection of the spleen colonies and bone marrow cells isolated from lethally irradiated animals 15 days and 30 days after injection of genetically modified bone marrow cells showed that the progeny cells of the transduced hematopoietic stem cells still contained and expressed the transduced genes, suggesting that the hematopoietic system is at least partially re-constructed by the stem cells with marker gene and that the stable expression of foreign genes in vivo can be attained by using this easy and harmless transduction protocol. These findings provide experimental basis for clinician to further investigate the biology of marrow reconstruction and the mechanism of leukemia relapse after BMT.
文摘Summary Liposomes have showed many advantages in mediating exogenous gene into many cell types in vitro and in vivo. But few data are available concerning gene transfer into hematopoietic cells. In this report, we described two-marker genes (Neo R and Lac Z) co-transferred into hematopoietic cells of human and mouse by using liposome in vitro. The efficiency of gene transfer was tested by X- gal staining and observation of colony formation. The X-gal blue staining rate of transduced cells was about (13. 33±2.68)% in human and about (16. 28±2. 95) % in mouse without G418 selection. After G418 selection, the blue cell rate was (46. 06±3. 47)% in human and (43. 45±4. 1)% in mouse, which were markedly higher than those before selection, suggesting that high-efficiency gene transfer and expression could be attained in primary hematopoietic cells using this easy and harmless transduction protocol. At the same time, this protocol provided experimental data for clinicians to in- vestigate the biology of marrow reconstitution and trace the origin of relapse after autologous bone marrow transplantation for the patients with leukemia.
文摘Alloimmunization was combined with lympho-kine activated killer (LAK) cells to assess its effect on mammary carcinoma in rats. The animals were injected with both irradiated allosplenocytes and syngeneic LAK cells. Metastatic lung nodules were markedly reduced using combined therapy when compared with the transfer of LAK cells or alloimmuni-zation alone. IL-2 activity in the serum of alloim-munized rats could be detected. This activity, maintained in vivo for one week, may be responsible for enhancing the antitumor effect of transferred LAK cells.
基金a grant from the Public Health Bureau of Jiangsu Province (H9549).
文摘Objective: To investigate retroviral-mediated transfer and expression of human multidrug resistance (MDR) gene MDR1 in leukemic cells. Methods: Human myeloid cells, K562 and NB4, were infected by MDR retrovirus from the producer PA317/HaMDR, and the resistant cells were selected with cytotoxic drug. The transfer and expression of MDR1 gene was analyzed by using polymerase chain reaction (PCR), flow cytometry (FCM) and semisolid colonies cultivation. Results: The resistant cells, K562/MDR and NB4/MDR, in which integration of the exogenous MDR1 gene was confirmed by PCR analysis, displayed a typical MDR phenotype. The expression of MDR1 transgene was detected on truncated as well as full-length transcripts. Moreover, the resistant cells were P-glycoprotein postiive at 78.0% to 98.7% analyzed with FCM. The transduction efficieny in K562 cells was studied on suspension cultures and single-cell colonies. The transduction was more efficient in coculture system (67.9%-72.5%) than in supernatant system (33.1%~46.8%), while growth factors may improve the efficiency. Conclusion: Retrovirus could allow a functional transfer and expression of MDR1 gene in human leukemia cells, and MDR1 might act as a dominant selectable gene for coexpression with the genes of interest in gene therapy.
文摘To investigate the characteristics of multidrugresistance and transplantation of modified stem/ progenitor cells by multidrugresistant gene (mdr1 gene), we established PA317/MDR1 cell line which producing retroviruses by transfecting the retroviral vector PHaMDR1/A into packging cell line PA317 by Lipofectin. The virus titer of the supernatants was 1.2×105 cfu/ml. We transfected the murine hematopietic cells collected from 5FU pretreated mice and they showed the ability to reconstitute the longterm hematopoiesis of preirradiated mice. After 4 months, both of bone marrow cells and peripheral blood cells of transplanted mice still contained mdr1 gene. We also transfered mdr1 gene into human bone marrow CD34+ cells selected by using magnetic cell sorting system. PCR analysis showed that transduced CD34+ cells maintained the mdr1 cDNA. A fraction of CFUGM originated from transfected CD34+ cells had the charactor of resistance to Taxol. It is indicated that mdr1 gene can be transduced into murine and human stem/proginitor cells through retroviral mediated gene transfer and it protects the transfected cells from cytotoxic drugs.
文摘A single potential step chronoabsorptometric method for the determination of ki- netic parameters of simple quasi-reversible reactions is described.It is verified by determining the kinetic parameters for the electroreduction of ferricyanide.A long-optical-path electro- chemical cell with a plug-in electrode is used.The thickness of solution layer is 0.55 mm
基金supported by the Peking University People’s Hospital Research and Development Foundation(No.RDB2007-03)
文摘Use of germ cells as vectors for transgenesis in mammals has been well developed and offers exciting prospects for experimental and applied biology, agricultural and medical sciences. Such approach is referred to as either male germ cell mediated gene transfer (MGCMGT) or female germ cell mediated gene transfer (FGCMGT) technique. Sperm-mediated gene transfer (SMGT), including its alternative method, testis-mediated gene transfer (TMGT), becomes an established and reliable method for transgenesis. They have been extensively used for producing transgenic animals. The newly developed approach of FGCMGT, ovary-mediated gene transfer (OMGT) is also a novel and useful tool for efficient transgenesis. This review highlights an overview of the recent progress in germ cell mediated gene transfer techniques, methods developed and mechanisms of nucleic acid uptake by germ cells.
基金This project was supported by a grant from the NaturalSciences Foundation of Hubei Province (N0 .97J0 70 )
文摘To investigate whether the TGF β1 plasmid DNA carried by lipofectamine could be introduced into cultured rabbit corneal epithelial cells, specific expression of the plasmid pMAM TGF β1 in the cultured corneal epithelial cells was studied. Two days after 12 h of transfection of pMAMTGF β1 mediated by lipofectamine into the cultured corneal epithelial cells, the TGF β1 protein expression specific for pMAMTGF β1 in the cells was detected by means of immunohistochemical staining and the positive rate was 23.37 %. The results suggested that foreign plasmid DNA could be effectively delivered into cultured rabbit corneal epithelial cells by means of lipofectamine, and this will provide a promising method of studying TGF β1 on the mechanism of physiology and pathology concerned with corneal epithelial cells.
基金supported by the National Major Special Project on New Varieties Cultivation for Transgenic Organisms,China(2014ZX08006-005 and 2014ZX0800950B)
文摘Homeobox A10(Hoxa10) gene is one of the most important candidate genes associated with the reproductive performance of humans and mice. Overexpression of Hoxa10 in mouse endometrium can increase litter size. Moreover, Hoxa10 plays a key role in regulating the embryo implantation of sows. This study aimed to generate transgenic pigs using Hoxa10 via somatic cell nuclear transfer(SCNT). We established seven Hoxa10-transgenic cell lines, and two of the cell lines were selected as nuclear donors for the transfer. A total of 1 270 cloned embryos were generated and transferred to five surrogate mothers(Landrace×Yorkshire). Eight cloned male piglets were produced including one with cryptorchidism. Six transgenic piglets grew up healthy and produced 56 offspring. Finally, we obtained six transgenic male pigs and 26 transgenic positive offspring that can be used to further study the regulatory mechanism of Hoxa10 on the reproductive performance of pigs.