To improve the heat transfer capability and the crystallization property of the traditional mold flux, CaF_2 was replaced with B_2O_3. Then, the influences of CeO_2 on the heat transfer and the crystallization of the ...To improve the heat transfer capability and the crystallization property of the traditional mold flux, CaF_2 was replaced with B_2O_3. Then, the influences of CeO_2 on the heat transfer and the crystallization of the CaF_2-bearing mold flux and the new mold flux with 10 wt% B_2O_3 were studied using a slag film heat flux simulator and X-ray diffraction(XRD). The results revealed that the addition of CeO2 reduced the heat transfer by increasing the solid slag thickness and the crystallization of two mold fluxes. However, CeO_2 had less effect on the B_2O_3-containing mold flux compared with the CaF_2-bearing mold flux. According to the analyses, the CeO_2 contents in the CaF_2-bearing mold flux and the B_2O_3-containing mold flux should not exceed 8 wt% and 12 wt%, respectively. Therefore, these experimental results are beneficial to improve and develop the mold flux for casting rare earth alloy steels.展开更多
The global distributions of the air-sea CO2 transfer velocity and flux are retrieved from TOPEX/Poseidon and Jason altimeter data from October 1992 to December 2009 using a combined algorithm. The 17 a average global,...The global distributions of the air-sea CO2 transfer velocity and flux are retrieved from TOPEX/Poseidon and Jason altimeter data from October 1992 to December 2009 using a combined algorithm. The 17 a average global, area-weighted, Schmidt number-corrected mean gas transfer velocity is 21.26 cm/h, and the full exploration of the uncertainty of this estimate awaits further data. The average total CO2 flux (calculated by carbon) from atmosphere to ocean during the 17 a was 2.58 Pg/a. The highest transfer velocity is in the circumpolar current area, because of constant high wind speeds and currents there. This results in strong CO2 fluxes. CO2 fluxes are strong but opposite direction in the equatorial east Pacific Ocean, because the air-sea CO2 partial pressure difference is the largest in the global cceans. The results differ from the previous studies calculated using the wind speed. It is demonstrated that the air-sea transfer velocity is very important for estimating air-sea CO2 flux. It is critical to have an accurate estimation for improving calculation of CO2 flux within climate change studies.展开更多
In this paper, the effect of non-uniform heat flux on heat transfer in boundary layer stagnation-point flow over a shrinking sheet is studied. The variable boundary heat fluxes are considered of two types: direct pow...In this paper, the effect of non-uniform heat flux on heat transfer in boundary layer stagnation-point flow over a shrinking sheet is studied. The variable boundary heat fluxes are considered of two types: direct power-law variation with the distance along the sheet and inverse power-law variation with the distance. The governing partial differential equations (PDEs) are transformed into non linear self-similar ordinary differential equations (ODEs) by similarity transformations, and then those are solved using very efficient shooting method. The direct variation and inverse variation of heat flux along the sheet have completely different effects on the temperature distribution. Moreover, the heat transfer characteristics in the presence of non-uniform heat flux for several values of physical parameters are also found to be interesting.展开更多
Using data from the European remote sensing scatterometer (ERS-2) from July 1997 to August 1998, glob- al distributions of the air-sea CO2 transfer velocity and flux are retrieved. A new model of the air-sea CO2 tra...Using data from the European remote sensing scatterometer (ERS-2) from July 1997 to August 1998, glob- al distributions of the air-sea CO2 transfer velocity and flux are retrieved. A new model of the air-sea CO2 transfer velocity with surface wind speed and wave steepness is proposed. The wave steepness (6) is re- trieved using a neural network (NN) model from ERS-2 scatterometer data, while the wind speed is directly derived by the ERS-2 scatterometer. The new model agrees well with the formulations based on the wind speed and the variation in the wind speed dependent relationships presented in many previous studies can be explained by this proposed relation with variation in wave steepness effect. Seasonally global maps of gas transfer velocity and flux are shown on the basis of the new model and the seasonal variations of the transfer velocity and flux during the 1 a period. The global mean gas transfer velocity is 30 cm/h after area-weighting and Schmidt number correction and its accuracy remains calculation with in situ data. The highest transfer velocity occurs around 60°N and 60°S, while the lowest on the equator. The total air to sea CO2 flux (calcu- lated by carbon) in that year is 1.77 Pg. The strongest source of CO2 is in the equatorial east Pacific Ocean, while the strongest sink is in the 68°N. Full exploration of the uncertainty of this estimate awaits further data. An effectual method is provided to calculate the effect of waves on the determination of air-sea CO2 transfer velociW and fluxes with ERS-2 scatterometer data.展开更多
This paper puts forward a new method to achieve flux cored wire TIG welding and uses high-speed photography to analyze the droplet transfer behavior and forces acting on the droplet. The droplet transfer forms include...This paper puts forward a new method to achieve flux cored wire TIG welding and uses high-speed photography to analyze the droplet transfer behavior and forces acting on the droplet. The droplet transfer forms include bridging transfer, slag column guided transfer, and non-contact transfer; each of these forms may be observed as the melting position of the welding wire changes. The important role of surface tension in the process of droplet transfer is proposed using static force balance theory and pinch instability theory. The phenomenon of droplet backward swing during welding process could be attributed to the vapor recoil force produced by vapors from the droplet. The welding experiments show that the proposed welding process is stable and that the weld quality produced is good.展开更多
The present numerically study investigates the influence of the Hall current and constant heat flux on the Magneto hydrodynamic (MHD) natural convection boundary layer viscous incompressible fluid flow in the manifest...The present numerically study investigates the influence of the Hall current and constant heat flux on the Magneto hydrodynamic (MHD) natural convection boundary layer viscous incompressible fluid flow in the manifestation of transverse magnetic field near an inclined vertical permeable flat plate. It is assumed that the induced magnetic field is negligible compared with the imposed magnetic field. The governing boundary layer equations have been transferred into non-similar model by implementing similarity approaches. The physical dimensionless parameter has been set up into the model as Prandtl number, Eckert number, Magnetic parameter, Schmidt number, local Grashof number and local modified Grashof number. The numerical method of Nactsheim-Swigert shooting iteration technique together with Runge-Kutta six order iteration scheme has been used to solve the system of governing non-similar equations. The physical effects of the various parameters on dimensionless primary velocity profile, secondary velocity profile, and temperature and concentration profile are discussed graphically. Moreover, the local skin friction coefficient, the local Nusselt number and Sherwood number are shown in tabular form for various values of the parameters.展开更多
Metal transfer behavior of six kinds of self shielded flux cored wire(SSFCW) is studied using the apparatus of SSFCW high speed photography self made. Six kinds of metal transfer modes of SSFCW were obtained throu...Metal transfer behavior of six kinds of self shielded flux cored wire(SSFCW) is studied using the apparatus of SSFCW high speed photography self made. Six kinds of metal transfer modes of SSFCW were obtained through observation for high speed photograph film and analysis. It is believed that the research is of magnificent for improving operative performance and mechanical properties of SSFCW and dynamics characteristic of welding power.展开更多
Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing tech...Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51774024)
文摘To improve the heat transfer capability and the crystallization property of the traditional mold flux, CaF_2 was replaced with B_2O_3. Then, the influences of CeO_2 on the heat transfer and the crystallization of the CaF_2-bearing mold flux and the new mold flux with 10 wt% B_2O_3 were studied using a slag film heat flux simulator and X-ray diffraction(XRD). The results revealed that the addition of CeO2 reduced the heat transfer by increasing the solid slag thickness and the crystallization of two mold fluxes. However, CeO_2 had less effect on the B_2O_3-containing mold flux compared with the CaF_2-bearing mold flux. According to the analyses, the CeO_2 contents in the CaF_2-bearing mold flux and the B_2O_3-containing mold flux should not exceed 8 wt% and 12 wt%, respectively. Therefore, these experimental results are beneficial to improve and develop the mold flux for casting rare earth alloy steels.
基金The Public Science and Technology Research Funds Projects of Ocean of State Oceanic Administration People’s Republic of China under contract No.200905012a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘The global distributions of the air-sea CO2 transfer velocity and flux are retrieved from TOPEX/Poseidon and Jason altimeter data from October 1992 to December 2009 using a combined algorithm. The 17 a average global, area-weighted, Schmidt number-corrected mean gas transfer velocity is 21.26 cm/h, and the full exploration of the uncertainty of this estimate awaits further data. The average total CO2 flux (calculated by carbon) from atmosphere to ocean during the 17 a was 2.58 Pg/a. The highest transfer velocity is in the circumpolar current area, because of constant high wind speeds and currents there. This results in strong CO2 fluxes. CO2 fluxes are strong but opposite direction in the equatorial east Pacific Ocean, because the air-sea CO2 partial pressure difference is the largest in the global cceans. The results differ from the previous studies calculated using the wind speed. It is demonstrated that the air-sea transfer velocity is very important for estimating air-sea CO2 flux. It is critical to have an accurate estimation for improving calculation of CO2 flux within climate change studies.
基金the National Board for Higher Mathematics(NBHM),DAE,Mumbai,India
文摘In this paper, the effect of non-uniform heat flux on heat transfer in boundary layer stagnation-point flow over a shrinking sheet is studied. The variable boundary heat fluxes are considered of two types: direct power-law variation with the distance along the sheet and inverse power-law variation with the distance. The governing partial differential equations (PDEs) are transformed into non linear self-similar ordinary differential equations (ODEs) by similarity transformations, and then those are solved using very efficient shooting method. The direct variation and inverse variation of heat flux along the sheet have completely different effects on the temperature distribution. Moreover, the heat transfer characteristics in the presence of non-uniform heat flux for several values of physical parameters are also found to be interesting.
基金Public Science and Technology Research Funds Projects of Ocean under contract No.200905012a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD) of China
文摘Using data from the European remote sensing scatterometer (ERS-2) from July 1997 to August 1998, glob- al distributions of the air-sea CO2 transfer velocity and flux are retrieved. A new model of the air-sea CO2 transfer velocity with surface wind speed and wave steepness is proposed. The wave steepness (6) is re- trieved using a neural network (NN) model from ERS-2 scatterometer data, while the wind speed is directly derived by the ERS-2 scatterometer. The new model agrees well with the formulations based on the wind speed and the variation in the wind speed dependent relationships presented in many previous studies can be explained by this proposed relation with variation in wave steepness effect. Seasonally global maps of gas transfer velocity and flux are shown on the basis of the new model and the seasonal variations of the transfer velocity and flux during the 1 a period. The global mean gas transfer velocity is 30 cm/h after area-weighting and Schmidt number correction and its accuracy remains calculation with in situ data. The highest transfer velocity occurs around 60°N and 60°S, while the lowest on the equator. The total air to sea CO2 flux (calcu- lated by carbon) in that year is 1.77 Pg. The strongest source of CO2 is in the equatorial east Pacific Ocean, while the strongest sink is in the 68°N. Full exploration of the uncertainty of this estimate awaits further data. An effectual method is provided to calculate the effect of waves on the determination of air-sea CO2 transfer velociW and fluxes with ERS-2 scatterometer data.
基金supported by the National Natural Science Foundation of China(No.51175374)the Natural Science Foundation of Tianjin(No.16JCZDJC38700)
文摘This paper puts forward a new method to achieve flux cored wire TIG welding and uses high-speed photography to analyze the droplet transfer behavior and forces acting on the droplet. The droplet transfer forms include bridging transfer, slag column guided transfer, and non-contact transfer; each of these forms may be observed as the melting position of the welding wire changes. The important role of surface tension in the process of droplet transfer is proposed using static force balance theory and pinch instability theory. The phenomenon of droplet backward swing during welding process could be attributed to the vapor recoil force produced by vapors from the droplet. The welding experiments show that the proposed welding process is stable and that the weld quality produced is good.
文摘The present numerically study investigates the influence of the Hall current and constant heat flux on the Magneto hydrodynamic (MHD) natural convection boundary layer viscous incompressible fluid flow in the manifestation of transverse magnetic field near an inclined vertical permeable flat plate. It is assumed that the induced magnetic field is negligible compared with the imposed magnetic field. The governing boundary layer equations have been transferred into non-similar model by implementing similarity approaches. The physical dimensionless parameter has been set up into the model as Prandtl number, Eckert number, Magnetic parameter, Schmidt number, local Grashof number and local modified Grashof number. The numerical method of Nactsheim-Swigert shooting iteration technique together with Runge-Kutta six order iteration scheme has been used to solve the system of governing non-similar equations. The physical effects of the various parameters on dimensionless primary velocity profile, secondary velocity profile, and temperature and concentration profile are discussed graphically. Moreover, the local skin friction coefficient, the local Nusselt number and Sherwood number are shown in tabular form for various values of the parameters.
文摘Metal transfer behavior of six kinds of self shielded flux cored wire(SSFCW) is studied using the apparatus of SSFCW high speed photography self made. Six kinds of metal transfer modes of SSFCW were obtained through observation for high speed photograph film and analysis. It is believed that the research is of magnificent for improving operative performance and mechanical properties of SSFCW and dynamics characteristic of welding power.
基金the European Research Council for starting grant 200141-QuESpace,with which the Vlasiator model was developedconsolidator grant 682068-PRESTISSIMO awarded for further development of Vlasiator and its use in scientific investigations+4 种基金Academy of Finland grant numbers 338629-AERGELC’H,339756-KIMCHI,336805-FORESAIL,and 335554-ICT-SUNVACThe Academy of Finland also supported this work through the PROFI4 grant(grant number 3189131)support from the NASA grants,80NSSC20K1670 and 80MSFC20C0019the NASA GSFC FY23 IRADHIF funds。
文摘Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside.