The linear multibody system transfer matrix method(LMSTMM)provides a powerful tool for analyzing the vibration characteristics of a mechanical system.However,the original LMSTMM cannot resolve the eigenvalues of the s...The linear multibody system transfer matrix method(LMSTMM)provides a powerful tool for analyzing the vibration characteristics of a mechanical system.However,the original LMSTMM cannot resolve the eigenvalues of the systems with ideal hinges(i.e.,revolute hinge,sliding hinge,spherical hinge,cylindrical hinge,etc.)or bodies under conservative forces due to the lack of the corresponding transfer matrices.This paper enables the LMSTMM to solve the eigenvalues of the planar multibody systems with ideal hinges or rigid bodies under conservative forces.For a rigid body,the transfer matrix can now consider coupling terms between forces and kinematic state perturbations.Also,conservative forces that contribute to the eigenvalues can be considered.Meanwhile,ideal hinges are introduced to LMSTMM,which enables the treatment of eigenvalues of general multibody systems using LMSTMM.Finally,the comparative analysis with ADAMS software and analytical solutions verifies the effectiveness of the proposed approach in this paper.展开更多
To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is dev...To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.展开更多
The precision of the laser gyro used in tactical missiles is poor because of dithering frequency,actuating by vibration,shock and overload in dynamical environment.This paper introduces the transfer matrix method of t...The precision of the laser gyro used in tactical missiles is poor because of dithering frequency,actuating by vibration,shock and overload in dynamical environment.This paper introduces the transfer matrix method of the multibody system(MSTMM),establishes the dynamic model of the laser gyro strapdown inertial measure assembly aseismatic system,and analyzes the precision affected by dithering of the laser gyro and shocking of the tactical missile.And the dynamic response of the laser gyro strapdown inertial measure assembly aseismatic system is obtained by simulating the multibody system model.The simulation result indicates a theoretical idea to design the vibration isolation for the laser gyro strapdown inertial measure assembly.展开更多
This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the R...This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.展开更多
The transfer matrix method for multibody systems, namely the "Rui method", is a new method for studying multibody system dynamics, which avoids the global dynamics equations of the system, keeps high computa...The transfer matrix method for multibody systems, namely the "Rui method", is a new method for studying multibody system dynamics, which avoids the global dynamics equations of the system, keeps high computational speed, and allows highly formalized programming. It has been widely applied to scientific research and key engineering of lots of complex mechanical systems in 52 research directions. The following aspects regarding the transfer matrix method for multibody systems are reviewed systematically in this paper: history, basic principles, formulas, algorithm, automatic deduction theorem of overall transfer equation, visualized simulation and design software, highlights, tendency, and applications in 52 research directions in over 100 key engineering products.展开更多
The multibody system transfer matrix method(MSTMM),a novel dynamics approach developed during the past three decades,has several advantages compared to conventional dynamics methods.Some of these advantages include av...The multibody system transfer matrix method(MSTMM),a novel dynamics approach developed during the past three decades,has several advantages compared to conventional dynamics methods.Some of these advantages include avoiding global dynamics equations with a system inertia matrix,utilizing low‐order matrices independent of system degree of freedom,high computational speed,and simplicity of computer implementation.MSTMM has been widely used in computer modeling,simulations,and performance evaluation of approximately 150 different complex mechanical systems.In this paper,the following aspects regarding MSTMM are reviewed:basic theory,algorithms,simulation and design software,and applications.Future research directions and generalization to more applications in various fields of science,technology,and engineering are discussed.展开更多
Efficient, precise dynamic modeling and analysis for complex weapon systems have become more and more important in their dynamic design and performance optimizing. As a new method developed in recent years, the discre...Efficient, precise dynamic modeling and analysis for complex weapon systems have become more and more important in their dynamic design and performance optimizing. As a new method developed in recent years, the discrete time transfer matrix method of multibody system is highly efficient for multibody system dynamics. In this paper, taking a shipboard gun system as an example, by deducing some new transfer equations of elements, the discrete time transfer matrix method of multibody sys- tem is used to solve the dynamics problems of complex rigid-flexible coupling weapon systems successfully. This method does not need the global dynamic equations of system and has the low order of system matrix, high computational efficiency. The proposed method has advantages for dynamic design of complex weapon systems, and can be carried over straightforwardly to other complex mechanical systems.展开更多
This paper develops a modular modeling and efficient formulation of launch dynamics with marching fire(LDMF)using a mixed formulation of the transfer matrix method for multibody systems(MSTMM)and Newton-Euler formulat...This paper develops a modular modeling and efficient formulation of launch dynamics with marching fire(LDMF)using a mixed formulation of the transfer matrix method for multibody systems(MSTMM)and Newton-Euler formulation.Taking a ground-borne multiple launch rocket systems(MLRS),the focus is on the launching subsystem comprising the rocket,flexible tube,and tube tail.The launching subsystem is treated as a coupled rigid-flexible multibody system,where the rocket and tube tail are treated as rigid bodies while the flexible tube as a beam with large motion.Firstly,the tube and tube tail can be elegantly handled by the MSTMM,a computationally efficient order-N formulation.Then,the equation of motion of the in-bore rocket with relative kinematics w.r.t.the tube using the Newton-Euler method is derived.Finally,the rocket,tube,and tube tail dynamics are coupled,yielding the equation of motion of the launching subsystem that can be regarded as a building block and further integrated with other subsystems.The deduced dynamics equation of the launching subsystem is not limited to ground-borne MLRS but also fits for tanks,self-propelled artilleries,and other air-borne and naval-borne weapons undergoing large motion.Numerical simulation results of LDMF are given and partially verified by the experiment.展开更多
In this paper,a novel launch dynamics measurement system based on the photoelectric sensor pair is built.The actual muzzle time(i.e.a time duration that originates from the initial movement to the rocket’s departure ...In this paper,a novel launch dynamics measurement system based on the photoelectric sensor pair is built.The actual muzzle time(i.e.a time duration that originates from the initial movement to the rocket’s departure from the muzzle)and the muzzle velocity are measured.Compared with the classical methods,the actual muzzle time is obtained by eliminating the ignition delay.The comparative analysis method is proposed with numerical simulations established by the transfer matrix method for multibody systems.The experiment results indicate that the proposed measurement system can effectively measure the actual muzzle time and reduce the error of classical methods,which match well with the simulation results showing the launch dynamics model is reliable and helpful for further analysis and design of the MLRS.展开更多
The dynamics of an ultra‐precision machine tool determines the precision of the machined surface.This study aims to propose an effective method to model and analyze the dynamics of an ultra‐precision fly‐cutting ma...The dynamics of an ultra‐precision machine tool determines the precision of the machined surface.This study aims to propose an effective method to model and analyze the dynamics of an ultra‐precision fly‐cutting machine tool.First,the dynamic model of the machine tool considering the deformations of the cutter head and the lathe head is developed.Then,the mechanical elements are classified into M subsystems and F subsystems according to their properties and connections.The M‐subsystem equations are formulated using the transfer matrix method for multibody systems(MSTMM),and the F‐subsystem equations are analyzed using the finite element method and the Craig-Bampton reduction method.Furthermore,all the subsystems are assembled by combining the restriction equations at connection points among the subsystems to obtain the overall transfer equation of the machine tool system.Finally,the vibration characteristics of the machine tool are evaluated numerically and are validated experimentally.The proposed modeling and analysis method preserves the advantages of the MSTMM,such as high computational efficiency,low computational load,systematic reduction of the overall transfer equation,and generalization of its computational capability to general flexible‐body elements.In addition,this study provides theoretical insights and guidance for the design of ultra‐precision machine tools.展开更多
In the multibody system transfer matrix method(MSTMM),the transfer matrix of body elements may be directly obtained from kinematic and kinetic equations.However,regarding the transfer matrices of hinge elements,typica...In the multibody system transfer matrix method(MSTMM),the transfer matrix of body elements may be directly obtained from kinematic and kinetic equations.However,regarding the transfer matrices of hinge elements,typically information of their outboard body is involved complicating modeling and even resulting in combinatorial problems w.r.t.various types of outboard body's output links.This problem may be resolved by formulating decoupled hinge equations and introducing the Riccati transformation in the new version of MSTMM called the reduced multibody system transfer matrix method in this paper.Systematic procedures for chain,tree,closed-loop,and arbitrary general systems are defined,respectively,to generate the overall system equations satisfying the boundary conditions of the system during the entire computational process.As a result,accumulation errors are avoided and computational stability is guaranteed even for huge systems with long chains as demonstrated by examples and comparison with commercial software automatic dynamic analysis of the mechanical system.展开更多
The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the ...The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems.In particular,the large-span scale flow field mesh model was created;and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique.The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results.In addition,the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time.Applying it to the dynamic model,the dynamic response of the tool tip under ambient vibration was investigated.The results elucidated that the tool tip response was significantly affected by ambient vibration,and the isolation foundation had a good effect on vibration isolation.展开更多
基金Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20190438National Natural Science Foundation of China,Grant/Award Number:11902158。
文摘The linear multibody system transfer matrix method(LMSTMM)provides a powerful tool for analyzing the vibration characteristics of a mechanical system.However,the original LMSTMM cannot resolve the eigenvalues of the systems with ideal hinges(i.e.,revolute hinge,sliding hinge,spherical hinge,cylindrical hinge,etc.)or bodies under conservative forces due to the lack of the corresponding transfer matrices.This paper enables the LMSTMM to solve the eigenvalues of the planar multibody systems with ideal hinges or rigid bodies under conservative forces.For a rigid body,the transfer matrix can now consider coupling terms between forces and kinematic state perturbations.Also,conservative forces that contribute to the eigenvalues can be considered.Meanwhile,ideal hinges are introduced to LMSTMM,which enables the treatment of eigenvalues of general multibody systems using LMSTMM.Finally,the comparative analysis with ADAMS software and analytical solutions verifies the effectiveness of the proposed approach in this paper.
基金Supported by the National Natural Science Foundation of China(10902051)the Natural Science Foundation of Jiangsu Province(BK2008046)~~
文摘To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.
基金supported by the Astronautical Support Foundation of China (2009HTXGD)
文摘The precision of the laser gyro used in tactical missiles is poor because of dithering frequency,actuating by vibration,shock and overload in dynamical environment.This paper introduces the transfer matrix method of the multibody system(MSTMM),establishes the dynamic model of the laser gyro strapdown inertial measure assembly aseismatic system,and analyzes the precision affected by dithering of the laser gyro and shocking of the tactical missile.And the dynamic response of the laser gyro strapdown inertial measure assembly aseismatic system is obtained by simulating the multibody system model.The simulation result indicates a theoretical idea to design the vibration isolation for the laser gyro strapdown inertial measure assembly.
基金The Natural Science Foundation of China(No.11972193)the Science Challenge Project(No.TZ2016006-0104)。
文摘This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.
基金supported by the Science Challenge Project of China(Grant No.TZ2016006-0104)the National Program on Key Basic Research Project(Grant No.613308)the National Natural Science Foundation of China(Grant No.11472135)
文摘The transfer matrix method for multibody systems, namely the "Rui method", is a new method for studying multibody system dynamics, which avoids the global dynamics equations of the system, keeps high computational speed, and allows highly formalized programming. It has been widely applied to scientific research and key engineering of lots of complex mechanical systems in 52 research directions. The following aspects regarding the transfer matrix method for multibody systems are reviewed systematically in this paper: history, basic principles, formulas, algorithm, automatic deduction theorem of overall transfer equation, visualized simulation and design software, highlights, tendency, and applications in 52 research directions in over 100 key engineering products.
基金National Program on Key Basic Research Project of China,Grant/Award Number:613308Science Challenge Project,Grant/Award Number:TZ2016006‐0104+3 种基金Natural Science Foundation of China Government,Grant/Award Number:11472135supported by the National Program on Key Basic Research Project of China(973 Program,No.613308)the Science Challenge Project(No.TZ2016006‐0104)the Natural Science Foundation of China Government(No.11472135).
文摘The multibody system transfer matrix method(MSTMM),a novel dynamics approach developed during the past three decades,has several advantages compared to conventional dynamics methods.Some of these advantages include avoiding global dynamics equations with a system inertia matrix,utilizing low‐order matrices independent of system degree of freedom,high computational speed,and simplicity of computer implementation.MSTMM has been widely used in computer modeling,simulations,and performance evaluation of approximately 150 different complex mechanical systems.In this paper,the following aspects regarding MSTMM are reviewed:basic theory,algorithms,simulation and design software,and applications.Future research directions and generalization to more applications in various fields of science,technology,and engineering are discussed.
基金supported by the National Natural Science Foundation of China (Grant No: 10902051)the Natural Science Foundation of Jiangsu Province (Grant No: BK2008046)
文摘Efficient, precise dynamic modeling and analysis for complex weapon systems have become more and more important in their dynamic design and performance optimizing. As a new method developed in recent years, the discrete time transfer matrix method of multibody system is highly efficient for multibody system dynamics. In this paper, taking a shipboard gun system as an example, by deducing some new transfer equations of elements, the discrete time transfer matrix method of multibody sys- tem is used to solve the dynamics problems of complex rigid-flexible coupling weapon systems successfully. This method does not need the global dynamic equations of system and has the low order of system matrix, high computational efficiency. The proposed method has advantages for dynamic design of complex weapon systems, and can be carried over straightforwardly to other complex mechanical systems.
基金The research is financially supported by the National Natural Science Foundation of China(No.11972193).
文摘This paper develops a modular modeling and efficient formulation of launch dynamics with marching fire(LDMF)using a mixed formulation of the transfer matrix method for multibody systems(MSTMM)and Newton-Euler formulation.Taking a ground-borne multiple launch rocket systems(MLRS),the focus is on the launching subsystem comprising the rocket,flexible tube,and tube tail.The launching subsystem is treated as a coupled rigid-flexible multibody system,where the rocket and tube tail are treated as rigid bodies while the flexible tube as a beam with large motion.Firstly,the tube and tube tail can be elegantly handled by the MSTMM,a computationally efficient order-N formulation.Then,the equation of motion of the in-bore rocket with relative kinematics w.r.t.the tube using the Newton-Euler method is derived.Finally,the rocket,tube,and tube tail dynamics are coupled,yielding the equation of motion of the launching subsystem that can be regarded as a building block and further integrated with other subsystems.The deduced dynamics equation of the launching subsystem is not limited to ground-borne MLRS but also fits for tanks,self-propelled artilleries,and other air-borne and naval-borne weapons undergoing large motion.Numerical simulation results of LDMF are given and partially verified by the experiment.
文摘In this paper,a novel launch dynamics measurement system based on the photoelectric sensor pair is built.The actual muzzle time(i.e.a time duration that originates from the initial movement to the rocket’s departure from the muzzle)and the muzzle velocity are measured.Compared with the classical methods,the actual muzzle time is obtained by eliminating the ignition delay.The comparative analysis method is proposed with numerical simulations established by the transfer matrix method for multibody systems.The experiment results indicate that the proposed measurement system can effectively measure the actual muzzle time and reduce the error of classical methods,which match well with the simulation results showing the launch dynamics model is reliable and helpful for further analysis and design of the MLRS.
基金National Natural Science Foundation of China,Grant/Award Number:52105129Science Challenge Project,Grant/Award Number:JZDD2016006–0102Boya Postdoctoral Fellowship of Peking University。
文摘The dynamics of an ultra‐precision machine tool determines the precision of the machined surface.This study aims to propose an effective method to model and analyze the dynamics of an ultra‐precision fly‐cutting machine tool.First,the dynamic model of the machine tool considering the deformations of the cutter head and the lathe head is developed.Then,the mechanical elements are classified into M subsystems and F subsystems according to their properties and connections.The M‐subsystem equations are formulated using the transfer matrix method for multibody systems(MSTMM),and the F‐subsystem equations are analyzed using the finite element method and the Craig-Bampton reduction method.Furthermore,all the subsystems are assembled by combining the restriction equations at connection points among the subsystems to obtain the overall transfer equation of the machine tool system.Finally,the vibration characteristics of the machine tool are evaluated numerically and are validated experimentally.The proposed modeling and analysis method preserves the advantages of the MSTMM,such as high computational efficiency,low computational load,systematic reduction of the overall transfer equation,and generalization of its computational capability to general flexible‐body elements.In addition,this study provides theoretical insights and guidance for the design of ultra‐precision machine tools.
基金This work was performed at the Brandenburg University of Technology(BTU Cottbus-Senftenberg)and supported by the National Major Project of the Chinese Government(No.2017JCJQ-ZD-005)the National Natural Science Foundation of China(No.11472135)+1 种基金a Scholarship by the Chinese Scholarship Council of the Ministry of Education of China(No.201708080083)the Nanjing University of Science and Technology International Joint Training Scholarship.
文摘In the multibody system transfer matrix method(MSTMM),the transfer matrix of body elements may be directly obtained from kinematic and kinetic equations.However,regarding the transfer matrices of hinge elements,typically information of their outboard body is involved complicating modeling and even resulting in combinatorial problems w.r.t.various types of outboard body's output links.This problem may be resolved by formulating decoupled hinge equations and introducing the Riccati transformation in the new version of MSTMM called the reduced multibody system transfer matrix method in this paper.Systematic procedures for chain,tree,closed-loop,and arbitrary general systems are defined,respectively,to generate the overall system equations satisfying the boundary conditions of the system during the entire computational process.As a result,accumulation errors are avoided and computational stability is guaranteed even for huge systems with long chains as demonstrated by examples and comparison with commercial software automatic dynamic analysis of the mechanical system.
文摘The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems.In particular,the large-span scale flow field mesh model was created;and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique.The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results.In addition,the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time.Applying it to the dynamic model,the dynamic response of the tool tip under ambient vibration was investigated.The results elucidated that the tool tip response was significantly affected by ambient vibration,and the isolation foundation had a good effect on vibration isolation.