期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Mass transfer mechanism and relationship of gas–liquid annular flow in a microfluidic cross-junction device 被引量:1
1
作者 Xin Xu Na Xu +3 位作者 Wei Zhang Junwen Wang Yao Li Chen Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期37-48,共12页
Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow... Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow have been reported.Therefore,the mass transfer mechanism and relationship of gas–liquid annular flow in a microfluidic cross-junction device are studied in the present study.We find that the main factors,i.e.,flow pattern,liquid film thickness,liquid hydraulic retention time,phase interface fluctuation,and gas flow vorticity,which influence the flow mass transfer property,are directly affected both by gas and liquid flow velocities.But the influences of gas and liquid velocities on different mass transfer influencing factors are different.Thereout,the fitting relationships between gas and liquid flow velocities and mass transfer influencing factors are established.By comparing the results from calculations using fitting equations and simulations,it shows that the fitting equations have relatively high degrees of accuracy.Finally,the Pareto front,namely the Pareto optimal solution set,of gas and liquid velocity conditions for the best flow mass transfer property is obtained using the method of multi-objective particle swarm optimization.It is proved that the mass transfer property of the gas–liquid two-phase flow can be obviously enhanced under the guidance of the obtained Pareto optimal solution set through experimental verification. 展开更多
关键词 Gas-liquid microreactor Annular flow mass transfer mechanism mass transfer relationship Multi-objective particle swarm optimization
下载PDF
THE STUDY ON THE MASS TRANSFER MECHANISM OF EUROPIUM ION THROUGH LIQUID SURFACTANT MEMBRANES
2
作者 姜长印 郁建涵 朱永(贝睿) 《Chinese Journal of Chemical Engineering》 SCIE EI CAS 1985年第1期11-19,共9页
The transfer of trivalent europium ion in a liquid surfactant membrane system is investigated in order toclarify the characteristics of liquid membrane separation process and the availability of this technique forreco... The transfer of trivalent europium ion in a liquid surfactant membrane system is investigated in order toclarify the characteristics of liquid membrane separation process and the availability of this technique forrecovering trivalent lanthanides and actinides.A layered structure model for the emulsion globule is sug-gested.The equations describing the relationship among the effective membrane thickness,the time andother factors are derived and verified experimentally.Results show that under certain conditions the decreas-ing concentration of europium ion in the external phase is proportional to the square root of the time,the acidity of the internal phase and the carrier concentration in the membrane phase.The membrane phase consists of kerosene(solvent),Span-80(surfactant)and di-(2-ethylhexyl) phosphoricacid(HDEHP,carrier).The internal phase is dilute nitric acid and the external phase is aqueous solu-tion containing Eu(NO3)3.The mass transfer rate of europium in this system is high and the recovery ofeuropium may be more than 99%. 展开更多
关键词 FIGURE show Eu HAZ THE STUDY ON THE mass transfer mechanism OF EUROPIUM ION THROUGH LIQUID SURFACTANT MEMBRANES
下载PDF
A computational analysis of the impact of mass transport and shear on three-dimensional stem cell cultures in perfused micro-bioreactors
3
作者 Himanshu Kaul Yiannis Ventikos Zhanfeng Cui 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第1期163-174,共12页
In this study, Computational Fluid Dynamics(CFD) is used to investigate and compare the impact of bioreactor parameters(such as its geometry, medium flow-rate, scaffold configuration) on the local transport phenomena ... In this study, Computational Fluid Dynamics(CFD) is used to investigate and compare the impact of bioreactor parameters(such as its geometry, medium flow-rate, scaffold configuration) on the local transport phenomena and, hence, their impact on human mesenchymal stem cell(hM SC) expansion. The geometric characteristics of the TissueFlex174;(Zyoxel Limited, Oxford, UK) microbioreactor were considered to set up a virtual bioreactor containing alginate(in both slab and bead configuration) scaffolds. The bioreactor and scaffolds were seeded with cells that were modelled as glucose consuming entities. The widely used glucose medium, Dulbecco's Modified Eagle Medium(DMEM), supplied at two inlet flow rates of 25 and 100 μl·h^(-1), was modelled as the fluid phase inside the bioreactors. The investigation, based on applying dimensional analysis to this problem, as well as on detailed three-dimensional transient CFD results, revealed that the default bioreactor design and boundary conditions led to internal and external glucose transport, as well as shear stresses, that are conducive to h MSC growth and expansion. Furthermore, results indicated that the ‘top-inout' design(as opposed to its symmetric counterpart) led to higher shear stress for the same media inlet rate(25 μl·h^(-1)), a feature that can be easily exploited to induce shear-dependent differentiation. These findings further confirm the suitability of CFD as a robust design tool. 展开更多
关键词 Alginate scaffolds Bioreactors Fluid mechanics Dimensionless quantities mass transfer Modelling Perfusion
下载PDF
Mass transfer mechanisms in fixed-bed adsorption of erythromycin 被引量:2
4
作者 Ying SUN Jiawen ZHU +2 位作者 Kui CHEN Sheng ZHU Jie XU 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2008年第4期353-360,共8页
The equilibrium and kinetic characteristics of the adsorption of erythromycin to Sepabeads SP825 were determined.The equilibrium data in a batch system was well described by a Langmuir isotherm.The separation performa... The equilibrium and kinetic characteristics of the adsorption of erythromycin to Sepabeads SP825 were determined.The equilibrium data in a batch system was well described by a Langmuir isotherm.The separation performance was investigated in a fixed-bed system with respect to the adsorption superficial velocity,ionic strength and pH.A mathematical model was used to simulate the mass transfer mechanism,taking film mass transfer,pore diffusion and axial dispersion into account.The model predictions were consistent with the experi-mental data and were consequently used to determine the mass transfer coefficients. 展开更多
关键词 fixed-bed adsorption superficial velocity ionic strength erythromycin However investigations on the parameters governing the performance of this technology are still scarce.In the present work a polymeric and porous resin Sepabeads SP825 resin was used for its higher adsorption efficiency compared with the resins reported.The equilib-rium capacity of Sepabeads SP825 for EM in a batch system was established using a Langmuir isotherm.The effects of superficial velocity ionic strength and pH on the adsorption process were determined from the results of fixed bed experiments.And a model of the purification process was used to simulate the mass transfer mechanism which has taken film mass transfer pore diffusion and axial dispersion into account.The experimental adsorp-tion measurements were compared to the results calcu-lated from the model.The completion of these studies provide some essential parameters which are required in order to design a successful purification process and better understand the fundamentals of these process.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部