期刊文献+
共找到1,465篇文章
< 1 2 74 >
每页显示 20 50 100
Transfer matrix method for free and forced vibrations of multi-level functionally graded material stepped beams with different boundary conditions
1
作者 Xiaoyang SU Tong HU +3 位作者 Wei ZHANG Houjun KANG Yunyue CONG Quan YUAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期983-1000,共18页
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th... Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM. 展开更多
关键词 transfer matrix method(TMM) free vibration forced vibration functionally graded material(FGM) stepped beam
下载PDF
Transfer matrix method for determination of the natural vibration characteristics of elastically coupled launch vehicle boosters 被引量:6
2
作者 Laith K.Abbas Qinbo Zhou +1 位作者 Hossam Hendy Xiaoting Rui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第4期570-580,共11页
The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the con... The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the context of the transfer matrix method of linear multibody systems closed- loop topology for computing the free vibration characteristics of elastically coupled flexible launch vehicle boosters. In this approach, the coupled system is idealized as a triple-beam system-like structure coupled by linear translational springs, where a non-uniform free-free Euler-Bemoulli beam is used. A large thrust-to-weight ratio leads to large axial accelera- tions that result in an axial inertia load distribution from nose to tail. Consequently, it causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. This scenario does not need the global dynamics equations of a system, and it has high computational efficiency and low memory requirements. The validity of the presented scenario is achieved through com- parison to other approaches published in the literature. 展开更多
关键词 transfer matrix method of linear multibodysystems Free vibration characteristics Coupled launchvehicle boosters
下载PDF
Carbon matrix effects on the micro-structure and performance of Pt nanowire cathode prepared by decal transfer method 被引量:4
3
作者 Zhaoxu Wei An He +1 位作者 Kaihua Su Sheng Sui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第2期213-218,共6页
High performance cathode for polymer electrolyte membrane fuel cell was prepared by depositing Pt nanowires in a carbon matrix coated on a substrate, and using decal transfer method to fabricate the membrane electrode... High performance cathode for polymer electrolyte membrane fuel cell was prepared by depositing Pt nanowires in a carbon matrix coated on a substrate, and using decal transfer method to fabricate the membrane electrode assembly. The effects of carbon and ionomer contents on the electrode micro-structure and fuel cell performance are investigated by physical characterization and single cell testing. The Pt nanowires are gradient distributed across the cathode thickness, and more Pt exists near the membrane. Both the carbon and ionomer contents can affect the Pt nanowires distribution and aggregation. In addition, the carbon loading dominates the transport distance of gas and proton, and the ionomer content affects the triple phase boundaries and porosity in the cathode. The optimal structure of Pt nanowire cathode is obtained at 0.10 mg·cm^-2 carbon loading and 10 wt% ionomer. 展开更多
关键词 Pt nanowire carbon matrix IONOMER decal transfer method polymer electrolyte membrane fuel cell
下载PDF
Discrete time transfer matrix method for dynamics of multibody system with flexible beams moving in space 被引量:4
4
作者 Xiao-Ting Rui Edwin Kreuzer +1 位作者 Bao Rong Bin He 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期490-504,共15页
In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to stud... In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of multibody system with flexible beams moving in space. Formulations and numerical example of a rigid- flexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system mov- ing in space, the global dynamics equations of system are not needed, the orders of involved matrices of the system are very low and the computational speed is high, irrespec- tive of the size of the system. The new method is simple, straightforward, practical, and provides a powerful tool for multi-rigid-flexible-body system dynamics. 展开更多
关键词 Multi-rigid-flexible-body system Spatial mo- tion DYNAMICS Discrete time transfer matrix method
下载PDF
Dynamics Analysis of a Parallel Mill-turn Tool Spindle Head Driven by Dual-linear Motors Using Extended Transfer Matrix Method 被引量:2
5
作者 WU Wenjing LIU Qiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期859-869,共11页
The hybrid dynamics of multi-rigid-body and multi-flexible-body system becomes the mainstream of multi-body dynamics.Currently there lacks a compact approach to model the hybrid dynamics,especially in modern machine t... The hybrid dynamics of multi-rigid-body and multi-flexible-body system becomes the mainstream of multi-body dynamics.Currently there lacks a compact approach to model the hybrid dynamics,especially in modern machine tool application,due to the difficulty of solving the hybrid equations or the limitation of current software when dealing with the hybrid dynamics.The extended transfer matrix method(E-TMM),which extends elements in three-dimensional space with higher matrixes,is proposed to simplify the modeling process of the hybrid dynamics.The E-TMM modeling approaches of 3 basic elements including 3D vibrant rigid body,joint and flexible body are studied in details.A parallel mill-turn tool spindle head unit driven by dual-linear motors is chosen as a plant to demonstrate the E-TMM modeling process.By using E-TMM,the spindle head unit is simplified as a topological network consisting of the three types of element,i.e.,3D vibrant rigid body,joint and flexible body,including 11 rigid bodies,14 joints and 1 3D-Timoshenko beam.Then the dynamic model of the system can be easily obtained by deducing the element-network by means of state vector transformation.The dynamic characteristics of the spindle head,such as natural frequencies,dynamic flexibility,etc.can be predicted by solving the obtained model.Experiment verification indicates that the E-TMM is valid with enough accuracy in the dynamic analysis of the parallel mill-turn tool spindle head.The E-TMM is capable of modeling the dynamics of machine tool structure with no requirements of deducing and solving the sophisticated differential equations.Moreover,the E-TMM provides a simple and elegant tool for hybrid dynamic analysis in future dynamic design of machine tools. 展开更多
关键词 NC machine tools dynamics modeling transfer matrix method(TMM)
下载PDF
Vibration analysis of fluid- structure interaction in water hammer based on transfer matrix method 被引量:1
6
作者 GAO Hui TANG Xuelin 《排灌机械工程学报》 EI CSCD 北大核心 2016年第6期518-524,共7页
In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation... In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation mathematical model of fluid-structure interaction(FSI)was developed.Then,the transfer matrix method(TMM)was used to calculate the modal frequency,modal shape and frequency response.The results were compared with that in experiment to verify the correctness of the TMM and the results show that the fluid-structure coupling has a greater impact on the modal frequencies than the modal shape.Finally,the influence on the response spectrum of different damping ratios was studied and the results show that the natural frequency under different damping ratios has changed little but there is a big difference for the pressure spectrum.With the decreasing of damping ratio,the damping of the system on frequency spectrum is more and more significant and the dispersion and dissipation is more and more apparent.Therefore the appropriate damping ratio should be selected to minimize the effects of the vibration of the FSI.The results provide references for the theory research of FSI in the transient process. 展开更多
关键词 water hammer fluid-structure interaction transfer matrix method vibration analysis
下载PDF
Analysis of the flexural vibration of ship's tail shaft by transfer matrix method 被引量:1
7
作者 贾小俊 范世东 《Journal of Marine Science and Application》 2008年第3期179-183,共5页
A ship's tail shaft has serious flexural vibration due to the cantilevered nature of the propeller's blades.Analysis of the nature frequency of flexural vibration is vital to be able to provide effective shock... A ship's tail shaft has serious flexural vibration due to the cantilevered nature of the propeller's blades.Analysis of the nature frequency of flexural vibration is vital to be able to provide effective shock absorption for a ship's tail shaft.A mathematic model of tail shaft flexural vibrations was built using the transfer matrix method.The nature frequency of flexural vibration for an electrically propelled ship's tail shaft was then analyzed,and an effective method for calculating it was proposed:a genetic algorithm(GA),which calculates the nature frequency of vibration of a system.Sample calculations,with comparisons by the Prohl method under conditions bearing isotropic support,showed this method to be practical.It should have significant impact on engineering design theory. 展开更多
关键词 transfer matrix method flexural vibration nature frequency genetic algorithm
下载PDF
The analytical transfer matrix method for quantum reflection
8
作者 许田 曹庄琪 方靖淮 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第4期56-61,共6页
In this paper, the analytical transfer matrix method (ATMM) is applied to study the properties of quantum reflection in three systems: a sech2 barrier, a ramp potential and an inverse harmonic oscillator. Our resul... In this paper, the analytical transfer matrix method (ATMM) is applied to study the properties of quantum reflection in three systems: a sech2 barrier, a ramp potential and an inverse harmonic oscillator. Our results agree with those obtained by Landau and Lifshitz [Landau L D and Lifshitz E M 1977 Quantum Mechanics (Non-relativistic Theory) (New York: Pergamon)], which proves that ATMM is a simple and effective method for quantum reflection. 展开更多
关键词 analytical transfer matrix method quantum reflection reflection coemcient transmission coefficient reflection time
下载PDF
Energy eigenvalues from an analytical transfer matrix method
9
作者 何英 张凡明 +1 位作者 杨艳芳 李春芳 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第4期50-55,共6页
A detailed procedure based on an analytical transfer matrix method is presented to solve bound-state problems. The derivation is strict and complete. The energy eigenvalues for an arbitrary one-dimensional potential c... A detailed procedure based on an analytical transfer matrix method is presented to solve bound-state problems. The derivation is strict and complete. The energy eigenvalues for an arbitrary one-dimensional potential can be obtained by the method. The anharmonic oscillator potential and the rational potential are two important examples. Checked by numerical techniques, the results for the two potentials by the present method are proven to be exact and reliable. 展开更多
关键词 analytical transfer matrix method energy eigenvalues bound state one-dimensional potential
下载PDF
Dynamic characteristics of a WPC-comparison of transfer matrix method and FE method
10
作者 CHEN Guo-long and ME Wu School of Shipbuilding Engineering , Harbin Engineering University, Harbin 150001 , China 《Journal of Marine Science and Application》 2003年第2期25-30,共6页
To find the difference in dynamic characteristics between conventional monohull ship and wave penetrating catamaran (WPC), a WPC was taken as an object; its dynamic characteristics were computed by transfer matrix met... To find the difference in dynamic characteristics between conventional monohull ship and wave penetrating catamaran (WPC), a WPC was taken as an object; its dynamic characteristics were computed by transfer matrix method and finite element method respectively. According to the comparison of the nature frequency results and mode shape results, the fact that FEM method is more suitable to dynamic characteristics analysis of a WPC was pointed out, special features on dynamic characteristics of WPC were given, and some beneficial suggestions are proposed to optimize the strength of a WPC in design period. 展开更多
关键词 Wave penetrating catamaran Dynamic characteristics transfer matrix method FEM.
下载PDF
Controlling the Bandgaps of One-Dimensional TiO2/SiO2, TiO2/SnO2, and SiO2/SnO2 Photonic Crystals Using the Transfer Matrix Method
11
作者 Fatimah Alamrani Edreese Alsharaeh 《Optics and Photonics Journal》 CAS 2022年第7期171-189,共19页
One-dimensional photonic crystals (1D PhCs) have a unique ability to control the propagation of light waves, however certain classes of 1D oxides remain relatively unexplored for use as PhCs. Specifically, there has n... One-dimensional photonic crystals (1D PhCs) have a unique ability to control the propagation of light waves, however certain classes of 1D oxides remain relatively unexplored for use as PhCs. Specifically, there has not been a comparative study of the three different 1D PhC structures to compare the influence of layer thickness, number, and refractive index on the ability of the PhCs to control light transmission. Herein, we use the transfer matrix method (TMM) to theoretically examine the transmission of 1D PhCs composed of layers of TiO<sub>2</sub>/SiO<sub>2</sub>, TiO<sub>2</sub>/SnO<sub>2</sub>, SiO<sub>2</sub>/SnO<sub>2</sub>, and combinations of the three with various top and bottom layer thicknesses to cover a substantial region of the electromagnetic spectrum (UV to NIR). With increasing layer numbers for TiO<sub>2</sub>/SiO<sub>2</sub> and SiO<sub>2</sub>/SnO<sub>2</sub>, the edges became sharper and wider and the photonic bandgap width increased. Moreover, we demonstrated that PhCs with significantly thick TiO<sub>2</sub>/SiO<sub>2</sub> layers had a high transmittance for a wide bandgap, allowing for wide-band optical filter applications. These different PhC architectures could enable a variety of applications, depending on the properties needed. 展开更多
关键词 One-Dimensional Photonic Crystal Photonic Bandgap transfer matrix method Optical Filter Metal Oxides
下载PDF
TRANSFER-MATRIX METHOD FOR SURFACE SPIN WAVES IN A SEMI-INFINITE MAGNETIC SUPERLATTICE WITH A SINGLE-ION ANISOTROPY
12
作者 李振亚 沈文忠 《苏州大学学报(自然科学版)》 CAS 1992年第2期176-184,共9页
Surface spin waves in a semi-infinite magnetre super lattice with a single-ion uniaxial anisotropy are investigated through the transfer mafrix method.The dispersion equations of surface spin wavs are obfained.We find... Surface spin waves in a semi-infinite magnetre super lattice with a single-ion uniaxial anisotropy are investigated through the transfer mafrix method.The dispersion equations of surface spin wavs are obfained.We find that not all the magnetic superlattice structures can excite the surface spin waves,and that the anisotropy term need not be favorable to the excitation of surface spin wavs,but surely influences the values of the energy of the excited surface spin waves. 展开更多
关键词 转移矩阵法 表面旋转波 超点阵 磁性材料 各向异性 离子
全文增补中
Radiation heat transfer model for complex superalloy turbine blade in directional solidification process based on finite element method 被引量:4
13
作者 Dun-ming Liao Liu Cao +4 位作者 Tao Chen Fei Sun Yong-zhen Jia Zi-hao Teng Yu-long Tang 《China Foundry》 SCIE 2016年第2期123-132,共10页
For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo... For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process. 展开更多
关键词 directional solidification radiation heat transfer finite element method numerical simulation local matrix superalloy turbine blade
下载PDF
The Effects of Interfaces on Stress Transfer in Short Fiber Reinforced Metal Matrix Composites
14
作者 康国政 高庆 刘世楷 《Journal of Modern Transportation》 1998年第1期48-53,共6页
In this paper, the effects of interface properties on the stress transfer between matrix and fiber in short fiber reinforced metal matrix composites (SFRMMCs) is studied with the method of the elasto plastic finite ... In this paper, the effects of interface properties on the stress transfer between matrix and fiber in short fiber reinforced metal matrix composites (SFRMMCs) is studied with the method of the elasto plastic finite element. The interface properties include Young’s modulus, thickness and elasto plastic performances. In the calculation an interfacial layer with given thickness is introduced into the single fiber model. It is shown that, for a soft interface, the variation in interfacial properties influences the stress transfer greatly. 展开更多
关键词 metal matrix composites interface stress transfer finite element method
下载PDF
Enabling the transfer matrix method to model serial-parallel compliant mechanisms including curved flexure beams
15
作者 Mingxiang Ling Lei Yuan +1 位作者 Tingjun Zeng Xianmin Zhang 《International Journal of Mechanical System Dynamics》 EI 2024年第1期48-62,共15页
Compliant mechanisms with curved flexure hinges/beams have potential advantages of small spaces,low stress levels,and flexible design parameters,which have attracted considerable attention in precision engineering,met... Compliant mechanisms with curved flexure hinges/beams have potential advantages of small spaces,low stress levels,and flexible design parameters,which have attracted considerable attention in precision engineering,metamaterials,robotics,and so forth.However,serial-parallel configurations with curved flexure hinges/beams often lead to a complicated parametric design.Here,the transfer matrix method is enabled for analysis of both the kinetostatics and dynamics of general serial-parallel compliant mechanisms without deriving laborious formulas or combining other modeling methods.Consequently,serial-parallel compliant mechanisms with curved flexure hinges/beams can be modeled in a straightforward manner based on a single transfer matrix of Timoshenko straight beams using a step-by-step procedure.Theoretical and numerical validations on two customized XY nanopositioners comprised of straight and corrugated flexure units confirm the concise modeling process and high prediction accuracy of the presented approach.In conclusion,the present study provides an enhanced transfer matrix modeling approach to streamline the kinetostatic and dynamic analyses of general serial-parallel compliant mechanisms and beam structures,including curved flexure hinges and irregular-shaped rigid bodies. 展开更多
关键词 compliant mechanisms curved flexure beams transfer matrix method nanopositioner rigid-body dynamics
原文传递
A SEMI-ANALYTICAL AND SEMI-NUMERICAL METHOD FOR SOLVING 2-D SOUND-STRUCTURE INTERACTION PROBLEMS 被引量:8
16
作者 Xiang Yu Huang Yuying (College of Civil Engineering and Mechanics,Huazhong University of Science and Technology,Wuhan 430074,China) 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第2期116-126,共11页
Based on the transfer matrix method and the virtual source simulation technique, this paper proposes a novel semi-analytical and semi-numerical method for solving 2-D sound- structure interaction problems under a harm... Based on the transfer matrix method and the virtual source simulation technique, this paper proposes a novel semi-analytical and semi-numerical method for solving 2-D sound- structure interaction problems under a harmonic excitation.Within any integration segment, as long as its length is small enough,along the circumferential curvilinear coordinate,the non- homogeneous matrix differential equation of an elastic ring of complex geometrical shape can be rewritten in terms of the homogeneous one by the method of extended homogeneous capacity proposed in this paper.For the exterior fluid domain,the multi-circular virtual source simulation technique is adopted.The source density distributed on each virtual circular curve may be ex- panded as the Fourier's series.Combining with the inverse fast Fourier transformation,a higher accuracy and efficiency method for solving 2-D exterior Helmholtz's problems is presented in this paper.In the aspect of solution to the coupling equations,the state vectors of elastic ring induced by the given harmonic excitation and generalized forces of coefficients of the Fourier series can be obtained respectively by using a high precision integration scheme combined with the method of extended homogeneous capacity put forward in this paper.According to the superposition princi- ple and compatibility conditions at the interface between the elastic ring and fluid,the algebraic equation of system can be directly constructed by using the least square approximation.Examples of acoustic radiation from two typical fluid-loaded elastic rings under a harmonic concentrated force are presented.Numerical results show that the method proposed is more efficient than the mixed FE-BE method in common use. 展开更多
关键词 sound-structure interaction acoustic radiatlon multi-circular virtual source simulation technique transfer matrix method inverse fast Fourier transformation semi-analytical and semi-numerical method
下载PDF
A NOVEL SEMI-ANALYTICAL METHOD FOR SOLVING ACOUSTIC RADIATION FROM LONGITUDINALLY STIFFENED INFINITE NON-CIRCULAR CYLINDRICAL SHELLS IN WATER 被引量:3
17
作者 XiangYu HuangYuying 《Acta Mechanica Solida Sinica》 SCIE EI 2005年第1期1-12,共12页
Based on the extended homogeneous capacity high precision integration method and the spectrum method of virtual boundary with a complex radius vector, a novel semi-analytical method, which has satisfactory computation... Based on the extended homogeneous capacity high precision integration method and the spectrum method of virtual boundary with a complex radius vector, a novel semi-analytical method, which has satisfactory computation efectiveness and precision, is presented for solving the acoustic radiation from a submerged infnite non-circular cylindrical shell stifened by longitudinal ribs by means of the Fourier integral transformation and stationary phase method. In this work, besides the normal interacting force, which is commonly adopted by some researchers, the other interacting forces and moments between the longitudinal ribs and the non-circular cylindrical shell are considered at the same time. The efects of the number and the size of the cross-section of longitudinal ribs on the characteristics of acoustic radiation are investigated. Numerical results show that the method proposed is more efcient than the existing mixed FE-BE method. 展开更多
关键词 sound-structure interaction stifened non-circular cylindrical shell vibration and acoustic radiation semi-analytical method transfer matrix method
下载PDF
Novel sensitivity analysis method and dynamics optimization for multiple launch rocket systems 被引量:1
18
作者 Tu Tianxiong Wang Guoping +1 位作者 Rui Xiaoting Miao Yunfei 《Journal of Southeast University(English Edition)》 EI CAS 2022年第1期15-19,共5页
This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the R... This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively. 展开更多
关键词 Riccati transfer matrix method for multibody systems multiple launch rocket system launch dynamics sensitivity analysis optimization design
下载PDF
A Finite Volume Unstructured Mesh Method for Fractional-in-space Allen-Cahn Equation 被引量:1
19
作者 CHEN Ai-min LIU Fa-wang 《Chinese Quarterly Journal of Mathematics》 2017年第4期345-354,共10页
Fractional-in-space Allen-Cahn equation containing a very strong nonlinear source term and small perturbation shows metastability and a quartic double well potential.Using a finite volume unstructured triangular mesh ... Fractional-in-space Allen-Cahn equation containing a very strong nonlinear source term and small perturbation shows metastability and a quartic double well potential.Using a finite volume unstructured triangular mesh method, the present paper solves the twodimensional fractional-in-space Allen-Cahn equation with homogeneous Neumann boundary condition on different irregular domains. The efficiency of the method is presented through numerical computation of the two-dimensional fractional-in-space Allen-Cahn equation on different domains. 展开更多
关键词 fractional-in-space Allen-Cahn equation finite volume method matrix transfertechnique preconditioned LANCZOS method
下载PDF
A Split-Step Predictor-Corrector Method for Space-Fractional Reaction-Diffusion Equations with Nonhomogeneous Boundary Conditions
20
作者 Kamran Kazmi Abdul Khaliq 《Communications on Applied Mathematics and Computation》 2019年第4期525-544,共20页
A split-step second-order predictor-corrector method for space-fractional reaction-diffusion equations with nonhomogeneous boundary conditions is presented and analyzed for the stability and convergence.The matrix tra... A split-step second-order predictor-corrector method for space-fractional reaction-diffusion equations with nonhomogeneous boundary conditions is presented and analyzed for the stability and convergence.The matrix transfer technique is used for spatial discretization of the problem.The method is shown to be unconditionally stable and second-order convergent.Numerical experiments are performed to confirm the stability and secondorder convergence of the method.The split-step predictor-corrector method is also compared with an IMEX predictor-corrector method which is found to incur oscillatory behavior for some time steps.Our method is seen to produce reliable and oscillatioresults for any time step when implemented on numerical examples with nonsmooth initial data.We also present a priori reliability constraint for the IMEX predictor-corrector method to avoid unwanted oscillations and show its validity numerically. 展开更多
关键词 FRACTIONAL LAPLACIAN Space-fractional reaction diffusion equations NON-HOMOGENEOUS boundary conditions matrix transfer technique PREDICTOR-CORRECTOR method
下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部