We investigate tricritical behavior of the O(n) model in two dimensions by means of transfer-matrix and finite-size scaling methods. For this purpose we consider an O(n) symmetric spin model on the honeycomb lattice w...We investigate tricritical behavior of the O(n) model in two dimensions by means of transfer-matrix and finite-size scaling methods. For this purpose we consider an O(n) symmetric spin model on the honeycomb lattice with vacancies; the tricritical behavior is associated with the percolation threshold of the vacancies. The vacancies are represented by face variables on the elementary hexagons of thelattice. We apply a mapping of the spin degrees of freedom model on a non-intersecting-loop model, in which the number n of spin components assumes the role of a continuously variable parameter. This loop model serves as a suitable basis for the construction of the transfer matrix.Our results reveal the existence of a tricritical line, parametrized by n, which connects the known universality classes of the tricritical Ising model and the theta point describing the collapse of a polymer. On the other side of theIsing point,the tricritical line extends to the n = 2 point describing a tricritical O(2) model.展开更多
Supercritical fluids(e.g.,hydrocarbon fuels,water,carbon dioxide,and organic working medium,etc)have been recognized as working media to improve thermal efficiencies in power cycles and energy conversion,and have been...Supercritical fluids(e.g.,hydrocarbon fuels,water,carbon dioxide,and organic working medium,etc)have been recognized as working media to improve thermal efficiencies in power cycles and energy conversion,and have been used or selected as the working fluids in engineering fields such as aerospace,nuclear power,solar energy,refrigeration,geothermal energy,chemical technology,and so on.To better understand the interesting characteristic or abnormal behaviors of supercritical fluids,most valuable research works(including experimental results and numerical studies)from domestic and abroad have been documented.As such,this paper presents a comprehensive review on heat transfer behaviors of some supercritical fluids in engineering applications.This review focuses on recently available articles published mainly from 2016 up to the present time.The common problems(i.e.,heat transfer enhancement and heat transfer deterioration particularly for the supercritical hydrocarbon fuels)in the supercritical field are summarized and some perspectives on future prospects are also included.展开更多
文摘We investigate tricritical behavior of the O(n) model in two dimensions by means of transfer-matrix and finite-size scaling methods. For this purpose we consider an O(n) symmetric spin model on the honeycomb lattice with vacancies; the tricritical behavior is associated with the percolation threshold of the vacancies. The vacancies are represented by face variables on the elementary hexagons of thelattice. We apply a mapping of the spin degrees of freedom model on a non-intersecting-loop model, in which the number n of spin components assumes the role of a continuously variable parameter. This loop model serves as a suitable basis for the construction of the transfer matrix.Our results reveal the existence of a tricritical line, parametrized by n, which connects the known universality classes of the tricritical Ising model and the theta point describing the collapse of a polymer. On the other side of theIsing point,the tricritical line extends to the n = 2 point describing a tricritical O(2) model.
基金sponsored by the National Natural Science Foundation of China(Nos.51676163,51976161,U1867218)the National 111 Project,China(No.B18041)+1 种基金the Fundamental Research Funds of Shenzhen City,China(No.JCYJ20170306155153048)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(No.CX202029).
文摘Supercritical fluids(e.g.,hydrocarbon fuels,water,carbon dioxide,and organic working medium,etc)have been recognized as working media to improve thermal efficiencies in power cycles and energy conversion,and have been used or selected as the working fluids in engineering fields such as aerospace,nuclear power,solar energy,refrigeration,geothermal energy,chemical technology,and so on.To better understand the interesting characteristic or abnormal behaviors of supercritical fluids,most valuable research works(including experimental results and numerical studies)from domestic and abroad have been documented.As such,this paper presents a comprehensive review on heat transfer behaviors of some supercritical fluids in engineering applications.This review focuses on recently available articles published mainly from 2016 up to the present time.The common problems(i.e.,heat transfer enhancement and heat transfer deterioration particularly for the supercritical hydrocarbon fuels)in the supercritical field are summarized and some perspectives on future prospects are also included.