The radiance leaving the earth-atmosphere system which can be sensed by a satellite borne radiometer is the sum of radiation emission from the earth surface and each atmospheric level that are transmitted to the top o...The radiance leaving the earth-atmosphere system which can be sensed by a satellite borne radiometer is the sum of radiation emission from the earth surface and each atmospheric level that are transmitted to the top of the atmosphere. The radiation emission from the earth surface and the radiance of each atmospheric level can be separated from the radiance at the top the atmospheric level measured by a satellite borne radiometer. However, it is very difficult to measure the atmospheric radiance, especially the synchronous measurement with the satellite. Thus some atmospheric radiative transfer models have been developed to provide many options for modeling atmospheric radiation transport, such as LOWTRAN, MODTRAN, 6S, FASCODE, LBLRTM, SHARC, and SAMM. Meanwhile, these models can support the detailed detector system design, the optimization and evaluation of satellite mission parameters, and the data processing procedures. As an example, the newly atmospheric radiative transfer models, MODTRAN will be compared with other models after the atmospheric radiative transfer is described. And the atmospheric radiative transfer simulation procedures and their applications to atmospheric transmittance, retrieval of atmospheric elements, and surface parameters, will also be presented.展开更多
The challenge of high temperatures in deep mining remains harmful to the health of workers and their production efficiency The addition of phase change materials (PCMs) to filling slurry and the use of the cold storag...The challenge of high temperatures in deep mining remains harmful to the health of workers and their production efficiency The addition of phase change materials (PCMs) to filling slurry and the use of the cold storage function of these materials to reduce downhole temperatures is an effective approach to alleviate the aforementioned problem.Paraffin–CaCl_(2)·6H_(2)O composite PCM was prepared in the laboratory.The composition,phase change latent heat,thermal conductivity,and cemented tailing backfill (CTB) compressive strength of the new material were studied.The heat transfer characteristics and endothermic effect of the PCM were simulated using Fluent software.The results showed the following:(1) The new paraffin–CaCl_(2)·6H_(2)O composite PCM improved the thermal conductivity of native paraffin while avoiding the water solubility of CaCl_(2)·6H_(2)O.(2) The calculation formula of the thermal conductivity of CaCl_(2)·6H_(2)O combined with paraffin was deduced,and the reasons were explained in principle.(3) The“enthalpy–mass scale model”was applied to calculate the phase change latent heat of nonreactive composite PCMs.(4)The addition of the paraffin–CaCl_(2)·6H_(2)O composite PCM reduced the CTB strength but increased its heat absorption capacity.This research can give a theoretical foundation for the use of heat storage backfill in green mines.展开更多
A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow...A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice.展开更多
In order to simulate field distribution rules,mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established,based on theories of permeability and dynamic dispersion through poro...In order to simulate field distribution rules,mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established,based on theories of permeability and dynamic dispersion through porous media. A gas dispersion equation in a 3-D field is calculated by use of numerical method on a weighted upstream multi-element balance. Based on data of an example with a U type ventilation mode,surface charts of air pressure distribution and gas concentration are drawn by Graphtool software. Finally,a comparison between actually measured results in the model test and the numerical simulation results is made to proves the numerical implementation feasible.展开更多
To reveal the complicated mechanism of the multicomponent mass transfer during the growth of ternary compound semiconductors, a numerical model based on Maxwell-Stefan equations was developed to simulate the Bridgman ...To reveal the complicated mechanism of the multicomponent mass transfer during the growth of ternary compound semiconductors, a numerical model based on Maxwell-Stefan equations was developed to simulate the Bridgman growth of CdZnTe crystal. The Maxwell-Stefan diffusion coefficients in the melt were estimated. Distributions of Zn, Cd, and Te were calculated with variable ampoule traveling rate and diffusion coefficients. The experimental results show that Zn in melt near the growth interface decreases and diffuses from the bulk melt to the growth interface. For Cd, the situation is just the opposite. The coupling effects of Zn and Cd diffusions result in an uphill diffusion of Te at the beginning of the growth. Throughout the growth, the concentration of Te in the melt keeps low near the growth interface but high far from the growth interface. Increasing the ampoule traveling rate will aggravate the segregation of Zn and Cd, and hence deteriorate the uniformity of Te. We also find that not only the diffusion coefficients but also the ratios between them have significant influence on the species diffusions.展开更多
A decision model of knowledge transfer is presented on the basis of the characteristics of knowledge transfer in a big data environment.This model can determine the weight of knowledge transferred from another enterpr...A decision model of knowledge transfer is presented on the basis of the characteristics of knowledge transfer in a big data environment.This model can determine the weight of knowledge transferred from another enterprise or from a big data provider.Numerous simulation experiments are implemented to test the efficiency of the optimization model.Simulation experiment results show that when increasing the weight of knowledge from big data knowledge provider,the total discount expectation of profits will increase,and the transfer cost will be reduced.The calculated results are in accordance with the actual economic situation.The optimization model can provide useful decision support for enterprises in a big data environment.展开更多
For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo...For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process.展开更多
Simulations of adsorption process using the Reynolds mass flux model described in Part I of these serial articles are presented. The object of the simulation is the methylene chloride adsorption in a packed column(0.0...Simulations of adsorption process using the Reynolds mass flux model described in Part I of these serial articles are presented. The object of the simulation is the methylene chloride adsorption in a packed column(0.041 m id,packed with spherical activated carbon up to a length of 0.2 m). With the Reynolds mass flux model,breakthrough/regeneration curves, concentration and temperature as well as the velocity distributions can be obtained. The simulated results are compared with the experimental data reported in the literature and satisfactory agreement is found both in breakthrough/regeneration curves and temperature curves. Moreover,the anisotropic turbulent mass diffusion is characterized and discussed.展开更多
Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch an...Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid.展开更多
The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat e...The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porous media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40% and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions.展开更多
Packed bed reactors are commonly found in the process industry,for example in flame-assisted calci-nation for cement production.Understanding the heat transfer inside the bed is essential for process control,product q...Packed bed reactors are commonly found in the process industry,for example in flame-assisted calci-nation for cement production.Understanding the heat transfer inside the bed is essential for process control,product quality and energy efficiency.Here we propose a technique to determine the internal temperature distribution of packed beds based on a combination of lifetime-based phosphor ther-mometry,ray tracing simulations,and assimilation of temperature data using finite element heat transfer simulations.To establish and validate the technique,we considered a reproducible regular packing of 6 mm diameter aluminum spheres,with one of the spheres in the top layer being electrically heated.If a sphere inside the packing is coated with thermographic phosphors and excitation light is directed to-wards the packing,luminescence from the coated sphere exits the packed bed after multiple reflection and the sphere's temperature can be determined.Isothermal measurements showed that the temper-ature obtained by phosphor thermometry is independent of the luminescent sphere location.When imaging the luminescence on a camera,the luminescence distribution in recorded image depended,however,on the position of the sphere.Therefore,in setups with multiple phosphor-coated spheres,their signals can be separated using a least squares fit.We demonstrate the approach using a setup with three luminescent spheres and validated the temperature readings against thermocouple measurements.To obtain the spatial signatures for individual sphere positions required for the least squares fit,ray tracing simulations were used.These provide an efficient alternative to single sphere measurements that are only practical for regular spherical packed beds.Multi-point measurements were used as input to a finite element heat transfer simulations to determine parameters such as particle-to-particle air gap distance.With these,the full temperature distribution inside the bed could be assimilated from the measured values.展开更多
A structure-based mass-transfer model for turbulent fluidized beds (TFBs) was established according to mass conservation and the balance of mass transfer and reaction. Unlike the traditional method, which assumes a ...A structure-based mass-transfer model for turbulent fluidized beds (TFBs) was established according to mass conservation and the balance of mass transfer and reaction. Unlike the traditional method, which assumes a homogeneous structure, this model considered the presence of voids and particle clusters in TFBs and built correlations for each phase. The flow parameters were solved based on a previously proposed structure-based drag model. The catalytic combustion of methane at three temperatures and ozone decomposition at various gas velocities were used to validate the model. The TFB reactions com- prised intrinsic reaction kinetics, internal diffusion, and external diffusion. The simulation results, which compared favorably with experimental data and were better than those based on the average method, demonstrated that methane was primarily consumed at the bottom of the bed and the methane concentration was closely related to the presence of the catalyst. The flow and diffusion had an important effect on the methane concentration. This model also predicted the outlet concentrations for ozone decomposition, which increased with increasing gas velocity, lnterphase mass transfer was presented as the limiting step for this system. This structure-based mass-transfer model is important for the industrial application of TFBs.展开更多
Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering. CFD simulation was carried out to investigate and analyze the local flow and heat transfer ...Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering. CFD simulation was carried out to investigate and analyze the local flow and heat transfer in a 120-sphere random packed bed. 3D Navier-Stokes equation was solved with a finite volume formulation based on the Chimera meshing technique. Investigation was focused on low Reynolds number flow (Re=4.6-56.2), which typically occurs in packed bed reactors in bio-chemical fields. Detailed temperature field information was obtained. Inhomogeneity of flow and heat transfer due to the non-uniform distribution of void fraction was discussed and analyzed.展开更多
A grate cooler is key equipment in quenching clinker and recovering heat in cement production. A two-dimensional numerical model based on a 5000 t/d cement plant is proposed to for a study on the gas-solid coupled hea...A grate cooler is key equipment in quenching clinker and recovering heat in cement production. A two-dimensional numerical model based on a 5000 t/d cement plant is proposed to for a study on the gas-solid coupled heat transfer process between the cooling air and clinker in a grate cooler. In this study, we use the Fluent dynamic mesh technique and porous media model through which the transient temperature distribution with the clinker motion process and steady temperature and pressure distribution are obtained. We validate the numerical model with the operating data of the cooling air outlet temperature. Then, we discuss the amount of mid-temperature air outlet and average diameter of clinker particles, which affect the heat effective utilization and cooling air pressure drop in clinker layer. We found that after adding one more mid-temperature air outlet, the average temperature of the air flowing into the heat recovery boiler increases by 29.04℃ and the ratio of heat effective utilization increases by 5.3%. This means heat recovery is more effective on adding one more mid-temperature air outlet. Further, the smaller the clinker particles, the more is the pressure drop in clinker layer; thus more power consumption is needed by the cooling fan.展开更多
Intergenerational conflict coordination is the fundamental requirement and core of sustainable development. In this paper, through the analysis of the future generations-oriented management mechanisms for intergenerat...Intergenerational conflict coordination is the fundamental requirement and core of sustainable development. In this paper, through the analysis of the future generations-oriented management mechanisms for intergenerational conflict, the idea of mechanisms and institution building for the coordination and management of intergenerational conflict is put forward. Furthermore, the future generations-oriented virtual negotiation support system (NSS) for intergenerational conflict is developed, built on the analysis of the process simulation of intergenerational wealth transfer, intergenerational equilibrium allocation of resources, and strategies for the mitigation and avoidance of intergenerational conflict, through the application of advanced IT technology. The virtual NSS for intergenerational conflict is helpful to the practical application of the sustainable development theory; on the other hand, it can be applied directly to the intergenerational equilibrium allocation of resources, national economic accounting, formulation of sustainable development strategies and other urgent national economic and social development issues. Finally, the sustainable development theory can be enriched and extended. Therefore, the development of the future generations-oriented virtual NSS for intergenerational conflict has certain theoretical and practical effects on the theory of sustainable development.展开更多
The lattice Boltzmann model with coupled chemical reaction was proposed to simulate the ion exchange process of rare earth leaching and verified by comparison with both empirical correlation of mass transfer coefficie...The lattice Boltzmann model with coupled chemical reaction was proposed to simulate the ion exchange process of rare earth leaching and verified by comparison with both empirical correlation of mass transfer coefficient and unreacted-core shrinking model. By simulation, the zonation phenomenon of leaching reagent in the leaching column was presented, and the breakthrough curve of leaching reagent was obtained. When t=50 s, there existed the saturated and exchange zones, and the leaching reagent concentration decreased gradually from 20 to 9.3 g/L. In accordance with the breakthrough curve, the breakthrough capacity of ion-type rare earth ore and the adsorbed ion concentration of leaching reagent were derived, the time of t=25 s was the breakthrough point of ammonium ion in leaching reagent and the breakthrough capacity of the rare earth ore was 125 g/L. Besides, the chemical kinetics parameters used for the solute transfer process of rare earth leaching were obtained by the simulation and then were used to determine the rate-limiting steps of rare earth leaching process.展开更多
Numerical simulation based on computational fluid dynamics (CFD) is a useful approach for quantitatively investigating the underlying thermal-mechanical conditions during FSW, such as temperature field and material ...Numerical simulation based on computational fluid dynamics (CFD) is a useful approach for quantitatively investigating the underlying thermal-mechanical conditions during FSW, such as temperature field and material deformation field. One of the critical issues in CFD simulation of FSW is the use of the frictional boundary condition, which represents the friction between the welding tool and the workpiece in the numerical models. In this study, three-dimensional numerical simulation is conducted to analyze the heat transfer and plastic deformation behaviors during the FSW of AA2024. For comparison purposes, both the boundary velocity (BV) models and the boundary shear stress (BSS) models are employed in order to assess their performances in predicting the temperature and material deformation in FSW. It is interesting to note that different boundary conditions yield similar predictions on temperature, but quite different predictions on material deformation. The numerical predictions are compared with the experimental results. The predicted deformation zone geometry by the BSS model is consistent with the experimental results while there is large difference between the predictions by the BV models and the experimental measurements. The fact that the BSS model yields more reasonable predictions on the deformation zone geometry is attributed to its capacity to automatically adjust the contact state at the tool/workpiece interface. Based on the favorable predictions on both the temperature field and the material deformation field, the BSS model is suggested to have a better performance in numerical simulation of FSW than the BV model.展开更多
The equilibrium and kinetic characteristics of the adsorption of erythromycin to Sepabeads SP825 were determined.The equilibrium data in a batch system was well described by a Langmuir isotherm.The separation performa...The equilibrium and kinetic characteristics of the adsorption of erythromycin to Sepabeads SP825 were determined.The equilibrium data in a batch system was well described by a Langmuir isotherm.The separation performance was investigated in a fixed-bed system with respect to the adsorption superficial velocity,ionic strength and pH.A mathematical model was used to simulate the mass transfer mechanism,taking film mass transfer,pore diffusion and axial dispersion into account.The model predictions were consistent with the experi-mental data and were consequently used to determine the mass transfer coefficients.展开更多
The existence, formation and content of water ice in the lunar permanently shaded region is one of the important questions for the current Moon study. On October 9, 2009, the LCROSS mission spacecraft impacted the Moo...The existence, formation and content of water ice in the lunar permanently shaded region is one of the important questions for the current Moon study. On October 9, 2009, the LCROSS mission spacecraft impacted the Moon, and the initial result verified the existence of water on the Moon. But the study on formation and content of water ice is still under debate. The existence of water ice can change the dielectric constants of the lunar regolith, and a microwave radiometer is most sensitive to the dielectric parameters. Based on this, in this paper, the radiation transfer model is improved according to the simulation results in high frequency. Then the mixture dielectric constant models, including Odelevsky model, Wagner and landau-Lifshitz model, Clau-sius model, Gruggeman-Hanai model, etc., are analyzed and compared. The analyzing results indicate that the biggest difference occurs between Lichtenecker model and the improved Dobson model. The values estimated by refractive model are the second biggest in all the models. And the results from Odelevsky model, strong fluctuation model, Wagner and Landau –Lifshitz model, Clausius model and Bruggeman-Hanai model are very near to each other. Thereafter, the relation between volume water ice content and microwave brightness temperature is constructed with Odelevsky mixing dielectric model and the improved radiative transfer simulation, and the volume water ice content in Cabeus crater is retrieved with the data from microwave radiometer onboard Chang’e-1 satellite. The results present that the improved radiative transfer model is proper for the brightness temperature simulation of the one infinite regolith layer in high frequency. The brightness temperature in Cabeus crater is 69.93 K (37 GHz), and the corresponding volume water ice content is about 2.8%.展开更多
One of the essential controls on the microwave thermal emissions(MTE) of the lunar regolith is the abundance of Fe O and TiO_2, known as the(Fe O+Ti O_2) abundance(FTA). In this paper, a radiative transfer simulation ...One of the essential controls on the microwave thermal emissions(MTE) of the lunar regolith is the abundance of Fe O and TiO_2, known as the(Fe O+Ti O_2) abundance(FTA). In this paper, a radiative transfer simulation is employed first to study the change in the brightness temperature(T_B) with FTA under a range of frequencies and surface temperatures. Then, we analyze the influence of FTA on the MTE of the lunar regolith using microwave sounder(CELMS) data from the Chang'E-2 lunar orbiter, Clementine UV-VIS data, and lunar samples recovered from the Apollo and Surveyor projects. We conclude that:(1) FTA strongly influences the MTE of the lunar regolith, but it is not the decisive control, and(2) FTA decreases slightly with depth. This research plays an essential role in appropriately inverting CELMS data to obtain lunar regolith parameters.展开更多
文摘The radiance leaving the earth-atmosphere system which can be sensed by a satellite borne radiometer is the sum of radiation emission from the earth surface and each atmospheric level that are transmitted to the top of the atmosphere. The radiation emission from the earth surface and the radiance of each atmospheric level can be separated from the radiance at the top the atmospheric level measured by a satellite borne radiometer. However, it is very difficult to measure the atmospheric radiance, especially the synchronous measurement with the satellite. Thus some atmospheric radiative transfer models have been developed to provide many options for modeling atmospheric radiation transport, such as LOWTRAN, MODTRAN, 6S, FASCODE, LBLRTM, SHARC, and SAMM. Meanwhile, these models can support the detailed detector system design, the optimization and evaluation of satellite mission parameters, and the data processing procedures. As an example, the newly atmospheric radiative transfer models, MODTRAN will be compared with other models after the atmospheric radiative transfer is described. And the atmospheric radiative transfer simulation procedures and their applications to atmospheric transmittance, retrieval of atmospheric elements, and surface parameters, will also be presented.
基金financial support provided by the National Natural Science Foundation of China (No. 52174106)the Key Technology Research and Development Program (No. 2022YFC2905102)。
文摘The challenge of high temperatures in deep mining remains harmful to the health of workers and their production efficiency The addition of phase change materials (PCMs) to filling slurry and the use of the cold storage function of these materials to reduce downhole temperatures is an effective approach to alleviate the aforementioned problem.Paraffin–CaCl_(2)·6H_(2)O composite PCM was prepared in the laboratory.The composition,phase change latent heat,thermal conductivity,and cemented tailing backfill (CTB) compressive strength of the new material were studied.The heat transfer characteristics and endothermic effect of the PCM were simulated using Fluent software.The results showed the following:(1) The new paraffin–CaCl_(2)·6H_(2)O composite PCM improved the thermal conductivity of native paraffin while avoiding the water solubility of CaCl_(2)·6H_(2)O.(2) The calculation formula of the thermal conductivity of CaCl_(2)·6H_(2)O combined with paraffin was deduced,and the reasons were explained in principle.(3) The“enthalpy–mass scale model”was applied to calculate the phase change latent heat of nonreactive composite PCMs.(4)The addition of the paraffin–CaCl_(2)·6H_(2)O composite PCM reduced the CTB strength but increased its heat absorption capacity.This research can give a theoretical foundation for the use of heat storage backfill in green mines.
文摘A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice.
基金Projects 50534090 and 50674090 supported by the National Natural Science Foundation of China2005CB221503 by the National Key Basic ResearchDevelopment Program (973 Program)
文摘In order to simulate field distribution rules,mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established,based on theories of permeability and dynamic dispersion through porous media. A gas dispersion equation in a 3-D field is calculated by use of numerical method on a weighted upstream multi-element balance. Based on data of an example with a U type ventilation mode,surface charts of air pressure distribution and gas concentration are drawn by Graphtool software. Finally,a comparison between actually measured results in the model test and the numerical simulation results is made to proves the numerical implementation feasible.
基金Funded by the National Key R&D Program of China(2016YFB0402405,2016YFF0101301)the Special Fund of National Key Scientific Instruments and Equipments Development(2011YQ040082)+4 种基金the National 973 Project of China(2011CB610400)the 111 Project of China(B08040)the National Natural Science Foundation of China(NNSFC-61274081,51372205,and 51502244)the Fundamental Research Funds for the Central Universities(3102015BJ(II)ZS014,G2016KY0104,3102016ZY011)the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘To reveal the complicated mechanism of the multicomponent mass transfer during the growth of ternary compound semiconductors, a numerical model based on Maxwell-Stefan equations was developed to simulate the Bridgman growth of CdZnTe crystal. The Maxwell-Stefan diffusion coefficients in the melt were estimated. Distributions of Zn, Cd, and Te were calculated with variable ampoule traveling rate and diffusion coefficients. The experimental results show that Zn in melt near the growth interface decreases and diffuses from the bulk melt to the growth interface. For Cd, the situation is just the opposite. The coupling effects of Zn and Cd diffusions result in an uphill diffusion of Te at the beginning of the growth. Throughout the growth, the concentration of Te in the melt keeps low near the growth interface but high far from the growth interface. Increasing the ampoule traveling rate will aggravate the segregation of Zn and Cd, and hence deteriorate the uniformity of Te. We also find that not only the diffusion coefficients but also the ratios between them have significant influence on the species diffusions.
基金supported by NSFC(Grant No.71373032)the Natural Science Foundation of Hunan Province(Grant No.12JJ4073)+3 种基金the Scientific Research Fund of Hunan Provincial Education Department(Grant No.11C0029)the Educational Economy and Financial Research Base of Hunan Province(Grant No.13JCJA2)the Project of China Scholarship Council for Overseas Studies(201208430233201508430121)
文摘A decision model of knowledge transfer is presented on the basis of the characteristics of knowledge transfer in a big data environment.This model can determine the weight of knowledge transferred from another enterprise or from a big data provider.Numerous simulation experiments are implemented to test the efficiency of the optimization model.Simulation experiment results show that when increasing the weight of knowledge from big data knowledge provider,the total discount expectation of profits will increase,and the transfer cost will be reduced.The calculated results are in accordance with the actual economic situation.The optimization model can provide useful decision support for enterprises in a big data environment.
基金financially supported by the Program for New Century Excellent Talents in University(No.NCET-13-0229,NCET-09-0396)the National Science & Technology Key Projects of Numerical Control(No.2012ZX04010-031,2012ZX0412-011)the National High Technology Research and Development Program("863"Program)of China(No.2013031003)
文摘For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process.
基金Supported by the National Natural Science Foundation of China(21376163)
文摘Simulations of adsorption process using the Reynolds mass flux model described in Part I of these serial articles are presented. The object of the simulation is the methylene chloride adsorption in a packed column(0.041 m id,packed with spherical activated carbon up to a length of 0.2 m). With the Reynolds mass flux model,breakthrough/regeneration curves, concentration and temperature as well as the velocity distributions can be obtained. The simulated results are compared with the experimental data reported in the literature and satisfactory agreement is found both in breakthrough/regeneration curves and temperature curves. Moreover,the anisotropic turbulent mass diffusion is characterized and discussed.
基金Supported by the National Natural Science Foundation of China(11472093 and21276056)
文摘Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid.
文摘The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porous media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40% and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions.
基金funding by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-Project-ID 422037413-TRR 287.
文摘Packed bed reactors are commonly found in the process industry,for example in flame-assisted calci-nation for cement production.Understanding the heat transfer inside the bed is essential for process control,product quality and energy efficiency.Here we propose a technique to determine the internal temperature distribution of packed beds based on a combination of lifetime-based phosphor ther-mometry,ray tracing simulations,and assimilation of temperature data using finite element heat transfer simulations.To establish and validate the technique,we considered a reproducible regular packing of 6 mm diameter aluminum spheres,with one of the spheres in the top layer being electrically heated.If a sphere inside the packing is coated with thermographic phosphors and excitation light is directed to-wards the packing,luminescence from the coated sphere exits the packed bed after multiple reflection and the sphere's temperature can be determined.Isothermal measurements showed that the temper-ature obtained by phosphor thermometry is independent of the luminescent sphere location.When imaging the luminescence on a camera,the luminescence distribution in recorded image depended,however,on the position of the sphere.Therefore,in setups with multiple phosphor-coated spheres,their signals can be separated using a least squares fit.We demonstrate the approach using a setup with three luminescent spheres and validated the temperature readings against thermocouple measurements.To obtain the spatial signatures for individual sphere positions required for the least squares fit,ray tracing simulations were used.These provide an efficient alternative to single sphere measurements that are only practical for regular spherical packed beds.Multi-point measurements were used as input to a finite element heat transfer simulations to determine parameters such as particle-to-particle air gap distance.With these,the full temperature distribution inside the bed could be assimilated from the measured values.
文摘A structure-based mass-transfer model for turbulent fluidized beds (TFBs) was established according to mass conservation and the balance of mass transfer and reaction. Unlike the traditional method, which assumes a homogeneous structure, this model considered the presence of voids and particle clusters in TFBs and built correlations for each phase. The flow parameters were solved based on a previously proposed structure-based drag model. The catalytic combustion of methane at three temperatures and ozone decomposition at various gas velocities were used to validate the model. The TFB reactions com- prised intrinsic reaction kinetics, internal diffusion, and external diffusion. The simulation results, which compared favorably with experimental data and were better than those based on the average method, demonstrated that methane was primarily consumed at the bottom of the bed and the methane concentration was closely related to the presence of the catalyst. The flow and diffusion had an important effect on the methane concentration. This model also predicted the outlet concentrations for ozone decomposition, which increased with increasing gas velocity, lnterphase mass transfer was presented as the limiting step for this system. This structure-based mass-transfer model is important for the industrial application of TFBs.
基金supported financially by the Shanghai Pujiang Program (07pj14072)the Shanghai Leading Academic Disci-pline Project (J05051)
文摘Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering. CFD simulation was carried out to investigate and analyze the local flow and heat transfer in a 120-sphere random packed bed. 3D Navier-Stokes equation was solved with a finite volume formulation based on the Chimera meshing technique. Investigation was focused on low Reynolds number flow (Re=4.6-56.2), which typically occurs in packed bed reactors in bio-chemical fields. Detailed temperature field information was obtained. Inhomogeneity of flow and heat transfer due to the non-uniform distribution of void fraction was discussed and analyzed.
基金supported by the Horizontal Subject(Grant No.11471501)the National Basic Research Program of China("973"Project)(Grant No.2013CB228305)
文摘A grate cooler is key equipment in quenching clinker and recovering heat in cement production. A two-dimensional numerical model based on a 5000 t/d cement plant is proposed to for a study on the gas-solid coupled heat transfer process between the cooling air and clinker in a grate cooler. In this study, we use the Fluent dynamic mesh technique and porous media model through which the transient temperature distribution with the clinker motion process and steady temperature and pressure distribution are obtained. We validate the numerical model with the operating data of the cooling air outlet temperature. Then, we discuss the amount of mid-temperature air outlet and average diameter of clinker particles, which affect the heat effective utilization and cooling air pressure drop in clinker layer. We found that after adding one more mid-temperature air outlet, the average temperature of the air flowing into the heat recovery boiler increases by 29.04℃ and the ratio of heat effective utilization increases by 5.3%. This means heat recovery is more effective on adding one more mid-temperature air outlet. Further, the smaller the clinker particles, the more is the pressure drop in clinker layer; thus more power consumption is needed by the cooling fan.
基金National Key Technol-ogy R&D Program (Grant No. 2006BAC02A15)the National Key Basic Research and Development Plan Projects (Grant No. 2006CB403403).
文摘Intergenerational conflict coordination is the fundamental requirement and core of sustainable development. In this paper, through the analysis of the future generations-oriented management mechanisms for intergenerational conflict, the idea of mechanisms and institution building for the coordination and management of intergenerational conflict is put forward. Furthermore, the future generations-oriented virtual negotiation support system (NSS) for intergenerational conflict is developed, built on the analysis of the process simulation of intergenerational wealth transfer, intergenerational equilibrium allocation of resources, and strategies for the mitigation and avoidance of intergenerational conflict, through the application of advanced IT technology. The virtual NSS for intergenerational conflict is helpful to the practical application of the sustainable development theory; on the other hand, it can be applied directly to the intergenerational equilibrium allocation of resources, national economic accounting, formulation of sustainable development strategies and other urgent national economic and social development issues. Finally, the sustainable development theory can be enriched and extended. Therefore, the development of the future generations-oriented virtual NSS for intergenerational conflict has certain theoretical and practical effects on the theory of sustainable development.
基金supported by the National Natural Science Foundation of China(51674125,51776212,91434113)National Key Basic Research Program of China(2015CB251402)Chinese Academy of Sciences(QYZDB-SSW-SYS029)and Outstanding Doctoral Dissertation Project Fund of JXUST(YB2016001)
文摘The lattice Boltzmann model with coupled chemical reaction was proposed to simulate the ion exchange process of rare earth leaching and verified by comparison with both empirical correlation of mass transfer coefficient and unreacted-core shrinking model. By simulation, the zonation phenomenon of leaching reagent in the leaching column was presented, and the breakthrough curve of leaching reagent was obtained. When t=50 s, there existed the saturated and exchange zones, and the leaching reagent concentration decreased gradually from 20 to 9.3 g/L. In accordance with the breakthrough curve, the breakthrough capacity of ion-type rare earth ore and the adsorbed ion concentration of leaching reagent were derived, the time of t=25 s was the breakthrough point of ammonium ion in leaching reagent and the breakthrough capacity of the rare earth ore was 125 g/L. Besides, the chemical kinetics parameters used for the solute transfer process of rare earth leaching were obtained by the simulation and then were used to determine the rate-limiting steps of rare earth leaching process.
基金supported by the National Natural Science Foundation of China(Grant No.51375259 and Grant No.51705280)the Ministry of Science and Technology of China(Grant No.2012ZX04012-011)+1 种基金Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase,Grant No.U1501501)the Tsinghua National Laboratory for Information Science and Technology
文摘Numerical simulation based on computational fluid dynamics (CFD) is a useful approach for quantitatively investigating the underlying thermal-mechanical conditions during FSW, such as temperature field and material deformation field. One of the critical issues in CFD simulation of FSW is the use of the frictional boundary condition, which represents the friction between the welding tool and the workpiece in the numerical models. In this study, three-dimensional numerical simulation is conducted to analyze the heat transfer and plastic deformation behaviors during the FSW of AA2024. For comparison purposes, both the boundary velocity (BV) models and the boundary shear stress (BSS) models are employed in order to assess their performances in predicting the temperature and material deformation in FSW. It is interesting to note that different boundary conditions yield similar predictions on temperature, but quite different predictions on material deformation. The numerical predictions are compared with the experimental results. The predicted deformation zone geometry by the BSS model is consistent with the experimental results while there is large difference between the predictions by the BV models and the experimental measurements. The fact that the BSS model yields more reasonable predictions on the deformation zone geometry is attributed to its capacity to automatically adjust the contact state at the tool/workpiece interface. Based on the favorable predictions on both the temperature field and the material deformation field, the BSS model is suggested to have a better performance in numerical simulation of FSW than the BV model.
文摘The equilibrium and kinetic characteristics of the adsorption of erythromycin to Sepabeads SP825 were determined.The equilibrium data in a batch system was well described by a Langmuir isotherm.The separation performance was investigated in a fixed-bed system with respect to the adsorption superficial velocity,ionic strength and pH.A mathematical model was used to simulate the mass transfer mechanism,taking film mass transfer,pore diffusion and axial dispersion into account.The model predictions were consistent with the experi-mental data and were consequently used to determine the mass transfer coefficients.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40901159 and40901187)Doctoral Fund of Ministry of Education of China (Grant No.20090061120055)+1 种基金the Basic Project Operating Fund of Jilin university(Grant No. 200903047)High-Tech Research and Development (863)Programme (Grant Nos. 2010AA122203 and 2008AA12A212)
文摘The existence, formation and content of water ice in the lunar permanently shaded region is one of the important questions for the current Moon study. On October 9, 2009, the LCROSS mission spacecraft impacted the Moon, and the initial result verified the existence of water on the Moon. But the study on formation and content of water ice is still under debate. The existence of water ice can change the dielectric constants of the lunar regolith, and a microwave radiometer is most sensitive to the dielectric parameters. Based on this, in this paper, the radiation transfer model is improved according to the simulation results in high frequency. Then the mixture dielectric constant models, including Odelevsky model, Wagner and landau-Lifshitz model, Clau-sius model, Gruggeman-Hanai model, etc., are analyzed and compared. The analyzing results indicate that the biggest difference occurs between Lichtenecker model and the improved Dobson model. The values estimated by refractive model are the second biggest in all the models. And the results from Odelevsky model, strong fluctuation model, Wagner and Landau –Lifshitz model, Clausius model and Bruggeman-Hanai model are very near to each other. Thereafter, the relation between volume water ice content and microwave brightness temperature is constructed with Odelevsky mixing dielectric model and the improved radiative transfer simulation, and the volume water ice content in Cabeus crater is retrieved with the data from microwave radiometer onboard Chang’e-1 satellite. The results present that the improved radiative transfer model is proper for the brightness temperature simulation of the one infinite regolith layer in high frequency. The brightness temperature in Cabeus crater is 69.93 K (37 GHz), and the corresponding volume water ice content is about 2.8%.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41371332 & 41590851)the Fundamental Research Funds for the Central Universities (Grant No. JCKY-QKJC23)the Science and Technology Development Fund of Macao (Grant No. 110/2014/A3)
文摘One of the essential controls on the microwave thermal emissions(MTE) of the lunar regolith is the abundance of Fe O and TiO_2, known as the(Fe O+Ti O_2) abundance(FTA). In this paper, a radiative transfer simulation is employed first to study the change in the brightness temperature(T_B) with FTA under a range of frequencies and surface temperatures. Then, we analyze the influence of FTA on the MTE of the lunar regolith using microwave sounder(CELMS) data from the Chang'E-2 lunar orbiter, Clementine UV-VIS data, and lunar samples recovered from the Apollo and Surveyor projects. We conclude that:(1) FTA strongly influences the MTE of the lunar regolith, but it is not the decisive control, and(2) FTA decreases slightly with depth. This research plays an essential role in appropriately inverting CELMS data to obtain lunar regolith parameters.