We investigate the thermal characteristics of standard organic light-emitting diodes (OLEDs) using a simple and clear 1D thermal model based on the basic heat transfer theory. The thermal model can accurately estima...We investigate the thermal characteristics of standard organic light-emitting diodes (OLEDs) using a simple and clear 1D thermal model based on the basic heat transfer theory. The thermal model can accurately estimate the device temperature, which is linearly with electrical input power. The simulation results show that there is almost no temperature gradient within the OLED device working under steady state conditions. Furthermore, thermal analysis simulation results show that the surface properties (convective heat transfer coetficient and surface emissivity) of the substrate or cathode can significantly affect the temperature distribution of the OLED.展开更多
The microscopic moleeular theory for electron transfer in a model solvent ishahr developed. The nonlinear response of the solvent molecules is be computedquanitatively in a new way. Adopting computer simulation daa an...The microscopic moleeular theory for electron transfer in a model solvent ishahr developed. The nonlinear response of the solvent molecules is be computedquanitatively in a new way. Adopting computer simulation daa and choosingappropriate reaction coordinae, a reasonable free energy dinram is constructed and thercorganhaion energy for the product state is calculated.展开更多
According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST soft...According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST software based on accurate cooling curves measured by the modified Jominy specimen and temperature-dependent thermo-physical properties of 7 B50 alloy calculated using the JMat Pro software. Results show that the average cooling rate at 6 mm from the quenching surface and 420-230 ℃(quench sensitive temperature range) is 45.78℃/s. The peak-value of the SSHTC is 69 kW/(m^2·K) obtained at spray quenching for 0.4 s and the corresponding temperature of the quenching surface is 160 ℃. In the initial stage of spray quenching, the phenomenon called "temperature plateau" appears on the cooling curve of the quenching surface. The temperature range of this plateau is 160-170℃ with the duration about 3 s. During the temperature plateau, heat transfer mechanism of the quenching surface transforms from nucleate boiling regime to single-phase convective regime.展开更多
In order to simplify the boundary conditions of pavement temperature field,the "Environment-Surface" system which considered the natural environment and pavement surface was established.Based on this system,...In order to simplify the boundary conditions of pavement temperature field,the "Environment-Surface" system which considered the natural environment and pavement surface was established.Based on this system,the partial differential equations of the one-dimensional heat conduction in the pavement were established on the basis of the heat transfer theory.Furthermore,the function forms of the initial and boundary conditions of the equations were created through the field experiments.The general solution of the pavement one-dimensional heat conduction partial differential equations was acquired by using Green's function,and the explicit expression of pavement temperature field under specific constraint conditions was derived.For the purpose of analysis,the pavement temperatures in different seasons were calculated using the explicit expression of pavement temperature field,and the calculation accuracy was analyzed through the comparison between measured and calculated values.Then,the relationship between fitting accuracy and calculation accuracy of pavement temperatures was analyzed.The analysis results show that: the usage of "Environment-Surface" system simplifies the calculation of pavement temperature field; the relative error between calculated and measured values is generally less than 7% and is seldom influenced by seasons; there is a positive correlation between the calculation accuracy and the fitting accuracy of pavement surface temperature; high fitting accuracy would result in less error of pavement temperature prediction.展开更多
Based on the formulation of a multiple non-isotropic scattering process, a characteristic source time is introduced to define the initial impulse width of energy density at the source. An analytical expression of the ...Based on the formulation of a multiple non-isotropic scattering process, a characteristic source time is introduced to define the initial impulse width of energy density at the source. An analytical expression of the initial intensity spectral density of a seismic wave is incorporated into the integral equation of seismic wave energy density. And, a recursive formula of Green's function is derived to obtain the higher order Green's function, which is included to describe the stronger non-isotropic scattering process. Then, the effect of the scattering pattern on the energy density envelope is investigated by the modified scattering theory. Significant differences arc found in the decay of the energy density envelopes with distances using different scattering patterns. The envelope synthesized by the forward dominated scattering pattern is larger than the results obtained by the isotropic and backward dominated scattering pattern. Different scattering patterns are also used to fit the observation data from the aftershocks of the 2008 Wenchuan earthquake. It is concluded that the envelopes synthesized by the forward scattering pattern can match the data better than the isotropic and backward dominated scattering cases, and a new interpretation of the coda wave is given. Finally, using the forward dominated scattering pattern, the envelope broadening of the observed data is reproduced.展开更多
In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of sour...In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake pre- diction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model.展开更多
Ground motion prediction is important for earthquake early warning systems, because the region's peak ground motion indicates the potential disaster. In order to predict the peak ground motion quickly and pre- cisely...Ground motion prediction is important for earthquake early warning systems, because the region's peak ground motion indicates the potential disaster. In order to predict the peak ground motion quickly and pre- cisely with limited station wave records, we propose a real- time numerical shake prediction and updating method. Our method first predicts the ground motion based on the ground motion prediction equation after P waves detection of several stations, denoted as the initial prediction. In order to correct the prediction error of the initial prediction, an updating scheme based on real-time simulation of wave propagation is designed. Data assimilation technique is incorporated to predict the distribution of seismic wave energy precisely. Radiative transfer theory and Monte Carlo simulation are used for modeling wave propagation in 2-D space, and the peak ground motion is calculated as quickly as possible. Our method has potential to predict shakemap, making the potential disaster be predicted before the real disaster happens. 2008 Ms8.0 Wenchuan earthquake is studied as an example to show the validity of the proposed method.展开更多
The interaction between captopril, an inhibitor of angiotensin converting enzyme and human serum albumin, a principal plasma protein in the liver has been investigated in vitro under a simulated physiological conditio...The interaction between captopril, an inhibitor of angiotensin converting enzyme and human serum albumin, a principal plasma protein in the liver has been investigated in vitro under a simulated physiological condition by UV-vis spectrophotometry and fluorescence spectrometry. The intrinsic fluorescence intensity of human serum albumin was strongly quenched by captopril. The binding constants and the number of binding sites can be calculated from the data obtained from fluorescence quenching experiments. The negative value of ΔG0 reveals that the binding process is a spontaneous process. According to the van’t Hoff equation, the standard enthalpy change (ΔH0) and standard entropy change (ΔS0) for the reaction were calculated to be 35.98 KJ●mol-1 and 221.25 J●mol-1 K. It indicated that the hydrophobic interactions play a main role in the binding of captopril to human serum albumin. In addition, the distance between captopril (acceptor) and tryptophan residues of human serum albumin (donor) was estimated to be 1.05 nm according to the F?rster’s resonance energy transfer theory. The results obtained herein will be of biological significance in pharmacology and clinical medicine.展开更多
The class of bi-directional optimal velocity models can describe the bi-directional looking effect that usually exists in the reality and is even enhanced with the development of the connected vehicle technologies. It...The class of bi-directional optimal velocity models can describe the bi-directional looking effect that usually exists in the reality and is even enhanced with the development of the connected vehicle technologies. Its combined string stability condition can be obtained through the method of the ring-road based string stability analysis. However, the partial string stability about traffic fluctuation propagated backward or forward was neglected, which will be analyzed in detail in this work by the method of transfer function and its H∞ norm from the viewpoint of control theory. Then, through comparing the conditions of combined and partial string stabilities, their relationships can make traffic flow be divided into three distinguishable regions, displaying various combined and partial string stability performance. Finally, the numerical experiments verify the theoretical results and find that the final displaying string stability or instability performance results from the accumulated and offset effects of traffic fluctuations propagated from different directions.展开更多
As we all know that English is the most widely used, so English translation occupies the balance of power. Translation practice has integral contact with culture. This study through the culture connection, life style,...As we all know that English is the most widely used, so English translation occupies the balance of power. Translation practice has integral contact with culture. This study through the culture connection, life style, cognitive thinking and values of the study of the present situation of Chinese and western culture and then analyzes the potential reasons so as to put forward some effective strategies to bridge the cultural differences.展开更多
Based on thermoacoustic theory, a coupled thermal-mechanical model for graphene films is established, and the analytical solutions for thermal-acoustic radiation from a graphene thin film are obtained. The sound press...Based on thermoacoustic theory, a coupled thermal-mechanical model for graphene films is established, and the analytical solutions for thermal-acoustic radiation from a graphene thin film are obtained. The sound pressure of the graphene film generator on different substrates is measured, and the measurement data is compared with the theoretical results. The frequency response from the experimental results is consistent with the theoretical ones, while the measured values are slightly lower than the theoretical ones. Therefore, the accuracy of the proposed theoretical model is verified. It is shown that thermal-acoustic radiation from a graphene thin film reveals a wide frequency response. The sound pressure level increases with the frequency in the low frequency range, while the sound pressure varies smoothly with frequency in the high frequency range. Thus it can be used as excellent thermal generator. When the thermal effusivity of the substrate is smaller, then the sound pressure of grapheme films will be higher. Furthermore, the sound pressure decreases with the increase of heat capacity per unit area of grapheme films. Results will contribute to the mechanism of graphene films generator and its applications in the design of loudspeaker and other related areas.展开更多
知识迁移理论(knowledge transfer theory,KTT)是竞技体育跨界选材的学理基础,是培养跨界选材思潮的新取向。运动员选材是依据一定的标准与测量评价手段培养专业人才的方法。跨界选材是运动员选材的具体方法,属于运动员选材理论体系。KT...知识迁移理论(knowledge transfer theory,KTT)是竞技体育跨界选材的学理基础,是培养跨界选材思潮的新取向。运动员选材是依据一定的标准与测量评价手段培养专业人才的方法。跨界选材是运动员选材的具体方法,属于运动员选材理论体系。KTT和跨界选材融合的新的选材标准重点体现出对运动员运动能力、身体功能方面的要求。融合选材是解决冰雪项目类专业人才短缺重要途径。通过质化研究、数理统计对学习迁移、项间移植、跨界选材融合的选材实验研究,旨在为加快冰雪运动普及和提高,发掘和培养优秀运动员探问路向。结论认为,KTT是跨界运动员选材的基础,为运动员跨界选材提供理论依据,KTT可以促进跨界选材,助力体育运动项目均衡发展。展开更多
The planetary gearbox is a critical part of wind turbines,and has great significance for their safety and reliability.Intelligent fault diagnosis methods for these gearboxes have made some achievements based on the av...The planetary gearbox is a critical part of wind turbines,and has great significance for their safety and reliability.Intelligent fault diagnosis methods for these gearboxes have made some achievements based on the availability of large quantities of labeled data.However,the data collected from the diagnosed devices are always unlabeled,and the acquisition of fault data from real gearboxes is time-consuming and laborious.As some gearbox faults can be conveniently simulated by a relatively precise dynamic model,the data from dynamic simulation containing some features are related to those from the actual machines.As a potential tool,transfer learning adapts a network trained in a source domain to its application in a target domain.Therefore,a novel fault diagnosis method combining transfer learning with dynamic model is proposed to identify the health conditions of planetary gearboxes.In the method,a modified lumped-parameter dynamic model of a planetary gear train is established to simulate the resultant vibration signal,while an optimized deep transfer learning network based on a one-dimensional convolutional neural network is built to extract domain-invariant features from different domains to achieve fault classification.Various groups of transfer diagnosis experiments of planetary gearboxes are carried out,and the experimental results demonstrate the effectiveness and the reliability of both the dynamic model and the proposed method.展开更多
Ultra-thin silver films were deposited by thermal evaporation, and the dielectric functions of samples were simulated using Drude-Lorentz oscillators. When s-polarized incident light from the BK7 glass into thin silve...Ultra-thin silver films were deposited by thermal evaporation, and the dielectric functions of samples were simulated using Drude-Lorentz oscillators. When s-polarized incident light from the BK7 glass into thin silver film at 45°angle using attenuated total reflection (ATR) mode, we experimental observed that the reflection reach a minimum of 1.87% at 520 nm for thickness of d--6.3 nm silver film, and it reach a minimum of 10.1% at 500 nm for thickness of d--4.1 nm. Moreover, we simulated the absorption changes with incident angles at 520 nm for both p-polarized (TM wave) and s-polarized (TE wave) light using transfer matrix theory, and calculated the electric field distributions. The absorption as a function of incident angles of TM wave and TE wave showed different characteristics under ATR mode, TE wave reached the maximum absorption around the critical angle θc-41.1°, while TM wave reached the minimum absorption.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11304247the Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars(No 2015KJXX-40)the Youth Foundation of Xi’an University of Post&Telecommunication under Grant Nos 1011215 and 1010473
文摘We investigate the thermal characteristics of standard organic light-emitting diodes (OLEDs) using a simple and clear 1D thermal model based on the basic heat transfer theory. The thermal model can accurately estimate the device temperature, which is linearly with electrical input power. The simulation results show that there is almost no temperature gradient within the OLED device working under steady state conditions. Furthermore, thermal analysis simulation results show that the surface properties (convective heat transfer coetficient and surface emissivity) of the substrate or cathode can significantly affect the temperature distribution of the OLED.
文摘The microscopic moleeular theory for electron transfer in a model solvent ishahr developed. The nonlinear response of the solvent molecules is be computedquanitatively in a new way. Adopting computer simulation daa and choosingappropriate reaction coordinae, a reasonable free energy dinram is constructed and thercorganhaion energy for the product state is calculated.
基金Project(2016YFB0300801)supported by the National Key Research and Development Program of ChinaProject(51371045)supported by the National Natural Science Foundation of China
文摘According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST software based on accurate cooling curves measured by the modified Jominy specimen and temperature-dependent thermo-physical properties of 7 B50 alloy calculated using the JMat Pro software. Results show that the average cooling rate at 6 mm from the quenching surface and 420-230 ℃(quench sensitive temperature range) is 45.78℃/s. The peak-value of the SSHTC is 69 kW/(m^2·K) obtained at spray quenching for 0.4 s and the corresponding temperature of the quenching surface is 160 ℃. In the initial stage of spray quenching, the phenomenon called "temperature plateau" appears on the cooling curve of the quenching surface. The temperature range of this plateau is 160-170℃ with the duration about 3 s. During the temperature plateau, heat transfer mechanism of the quenching surface transforms from nucleate boiling regime to single-phase convective regime.
基金Projects(2012zzts019,2012QNZT048)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(201306370121)supported by the State Scholarship Fund of China+3 种基金Project(JT20090898002)supported by Traffic Technology Fund of Hainan Province,ChinaProject(2012M521563)supported by the China Postdoctoral Science FoundationProject(51248006)supported by The National Natural Science Foundation of ChinaProject(511114)supported by the Natural Science Foundation of Hainan Province,China
文摘In order to simplify the boundary conditions of pavement temperature field,the "Environment-Surface" system which considered the natural environment and pavement surface was established.Based on this system,the partial differential equations of the one-dimensional heat conduction in the pavement were established on the basis of the heat transfer theory.Furthermore,the function forms of the initial and boundary conditions of the equations were created through the field experiments.The general solution of the pavement one-dimensional heat conduction partial differential equations was acquired by using Green's function,and the explicit expression of pavement temperature field under specific constraint conditions was derived.For the purpose of analysis,the pavement temperatures in different seasons were calculated using the explicit expression of pavement temperature field,and the calculation accuracy was analyzed through the comparison between measured and calculated values.Then,the relationship between fitting accuracy and calculation accuracy of pavement temperatures was analyzed.The analysis results show that: the usage of "Environment-Surface" system simplifies the calculation of pavement temperature field; the relative error between calculated and measured values is generally less than 7% and is seldom influenced by seasons; there is a positive correlation between the calculation accuracy and the fitting accuracy of pavement surface temperature; high fitting accuracy would result in less error of pavement temperature prediction.
基金the State Key Program of National Natural Science of China under Grant No. 51138001Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant No. 51121005Open Research Fund Program of State key Laboratory of Hydro science and Engineering under Grant No. shlhse-2010-C-03
文摘Based on the formulation of a multiple non-isotropic scattering process, a characteristic source time is introduced to define the initial impulse width of energy density at the source. An analytical expression of the initial intensity spectral density of a seismic wave is incorporated into the integral equation of seismic wave energy density. And, a recursive formula of Green's function is derived to obtain the higher order Green's function, which is included to describe the stronger non-isotropic scattering process. Then, the effect of the scattering pattern on the energy density envelope is investigated by the modified scattering theory. Significant differences arc found in the decay of the energy density envelopes with distances using different scattering patterns. The envelope synthesized by the forward dominated scattering pattern is larger than the results obtained by the isotropic and backward dominated scattering pattern. Different scattering patterns are also used to fit the observation data from the aftershocks of the 2008 Wenchuan earthquake. It is concluded that the envelopes synthesized by the forward scattering pattern can match the data better than the isotropic and backward dominated scattering cases, and a new interpretation of the coda wave is given. Finally, using the forward dominated scattering pattern, the envelope broadening of the observed data is reproduced.
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(grant No.2014BAK03B02)Science for Earthquake Resilience(grant Nos XH16021 and XH16022Y)
文摘In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake pre- diction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model.
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(grant No.2014BAK03B02)Science for Earthquake Resilience(grant Nos XH16021 and XH16022Y)
文摘Ground motion prediction is important for earthquake early warning systems, because the region's peak ground motion indicates the potential disaster. In order to predict the peak ground motion quickly and pre- cisely with limited station wave records, we propose a real- time numerical shake prediction and updating method. Our method first predicts the ground motion based on the ground motion prediction equation after P waves detection of several stations, denoted as the initial prediction. In order to correct the prediction error of the initial prediction, an updating scheme based on real-time simulation of wave propagation is designed. Data assimilation technique is incorporated to predict the distribution of seismic wave energy precisely. Radiative transfer theory and Monte Carlo simulation are used for modeling wave propagation in 2-D space, and the peak ground motion is calculated as quickly as possible. Our method has potential to predict shakemap, making the potential disaster be predicted before the real disaster happens. 2008 Ms8.0 Wenchuan earthquake is studied as an example to show the validity of the proposed method.
基金the National Key Technology R&D Program of China(No.2008BAJ08B13)for financially supporting this work.
文摘The interaction between captopril, an inhibitor of angiotensin converting enzyme and human serum albumin, a principal plasma protein in the liver has been investigated in vitro under a simulated physiological condition by UV-vis spectrophotometry and fluorescence spectrometry. The intrinsic fluorescence intensity of human serum albumin was strongly quenched by captopril. The binding constants and the number of binding sites can be calculated from the data obtained from fluorescence quenching experiments. The negative value of ΔG0 reveals that the binding process is a spontaneous process. According to the van’t Hoff equation, the standard enthalpy change (ΔH0) and standard entropy change (ΔS0) for the reaction were calculated to be 35.98 KJ●mol-1 and 221.25 J●mol-1 K. It indicated that the hydrophobic interactions play a main role in the binding of captopril to human serum albumin. In addition, the distance between captopril (acceptor) and tryptophan residues of human serum albumin (donor) was estimated to be 1.05 nm according to the F?rster’s resonance energy transfer theory. The results obtained herein will be of biological significance in pharmacology and clinical medicine.
基金Projects(51108465,71371192)supported by the National Natural Science Foundation of ChinaProject(2014M552165)supported by China Postdoctoral Science FoundationProject(20113187851460)supported by Technology Project of the Ministry of Transport of China
文摘The class of bi-directional optimal velocity models can describe the bi-directional looking effect that usually exists in the reality and is even enhanced with the development of the connected vehicle technologies. Its combined string stability condition can be obtained through the method of the ring-road based string stability analysis. However, the partial string stability about traffic fluctuation propagated backward or forward was neglected, which will be analyzed in detail in this work by the method of transfer function and its H∞ norm from the viewpoint of control theory. Then, through comparing the conditions of combined and partial string stabilities, their relationships can make traffic flow be divided into three distinguishable regions, displaying various combined and partial string stability performance. Finally, the numerical experiments verify the theoretical results and find that the final displaying string stability or instability performance results from the accumulated and offset effects of traffic fluctuations propagated from different directions.
文摘As we all know that English is the most widely used, so English translation occupies the balance of power. Translation practice has integral contact with culture. This study through the culture connection, life style, cognitive thinking and values of the study of the present situation of Chinese and western culture and then analyzes the potential reasons so as to put forward some effective strategies to bridge the cultural differences.
基金supported by the National Natural Science Foundation of China(51375321)Soochow University "Soochow Scholars" program(R513300116)
文摘Based on thermoacoustic theory, a coupled thermal-mechanical model for graphene films is established, and the analytical solutions for thermal-acoustic radiation from a graphene thin film are obtained. The sound pressure of the graphene film generator on different substrates is measured, and the measurement data is compared with the theoretical results. The frequency response from the experimental results is consistent with the theoretical ones, while the measured values are slightly lower than the theoretical ones. Therefore, the accuracy of the proposed theoretical model is verified. It is shown that thermal-acoustic radiation from a graphene thin film reveals a wide frequency response. The sound pressure level increases with the frequency in the low frequency range, while the sound pressure varies smoothly with frequency in the high frequency range. Thus it can be used as excellent thermal generator. When the thermal effusivity of the substrate is smaller, then the sound pressure of grapheme films will be higher. Furthermore, the sound pressure decreases with the increase of heat capacity per unit area of grapheme films. Results will contribute to the mechanism of graphene films generator and its applications in the design of loudspeaker and other related areas.
文摘知识迁移理论(knowledge transfer theory,KTT)是竞技体育跨界选材的学理基础,是培养跨界选材思潮的新取向。运动员选材是依据一定的标准与测量评价手段培养专业人才的方法。跨界选材是运动员选材的具体方法,属于运动员选材理论体系。KTT和跨界选材融合的新的选材标准重点体现出对运动员运动能力、身体功能方面的要求。融合选材是解决冰雪项目类专业人才短缺重要途径。通过质化研究、数理统计对学习迁移、项间移植、跨界选材融合的选材实验研究,旨在为加快冰雪运动普及和提高,发掘和培养优秀运动员探问路向。结论认为,KTT是跨界运动员选材的基础,为运动员跨界选材提供理论依据,KTT可以促进跨界选材,助力体育运动项目均衡发展。
基金Natural Science Foundation of Shanghai (21ZR1425400)Shanghai Rising-Star Program (21QC1400200)+1 种基金National Natural Science Foundation of China (51977128)Shanghai Science and Technology Project (20142202600).
文摘The planetary gearbox is a critical part of wind turbines,and has great significance for their safety and reliability.Intelligent fault diagnosis methods for these gearboxes have made some achievements based on the availability of large quantities of labeled data.However,the data collected from the diagnosed devices are always unlabeled,and the acquisition of fault data from real gearboxes is time-consuming and laborious.As some gearbox faults can be conveniently simulated by a relatively precise dynamic model,the data from dynamic simulation containing some features are related to those from the actual machines.As a potential tool,transfer learning adapts a network trained in a source domain to its application in a target domain.Therefore,a novel fault diagnosis method combining transfer learning with dynamic model is proposed to identify the health conditions of planetary gearboxes.In the method,a modified lumped-parameter dynamic model of a planetary gear train is established to simulate the resultant vibration signal,while an optimized deep transfer learning network based on a one-dimensional convolutional neural network is built to extract domain-invariant features from different domains to achieve fault classification.Various groups of transfer diagnosis experiments of planetary gearboxes are carried out,and the experimental results demonstrate the effectiveness and the reliability of both the dynamic model and the proposed method.
文摘Ultra-thin silver films were deposited by thermal evaporation, and the dielectric functions of samples were simulated using Drude-Lorentz oscillators. When s-polarized incident light from the BK7 glass into thin silver film at 45°angle using attenuated total reflection (ATR) mode, we experimental observed that the reflection reach a minimum of 1.87% at 520 nm for thickness of d--6.3 nm silver film, and it reach a minimum of 10.1% at 500 nm for thickness of d--4.1 nm. Moreover, we simulated the absorption changes with incident angles at 520 nm for both p-polarized (TM wave) and s-polarized (TE wave) light using transfer matrix theory, and calculated the electric field distributions. The absorption as a function of incident angles of TM wave and TE wave showed different characteristics under ATR mode, TE wave reached the maximum absorption around the critical angle θc-41.1°, while TM wave reached the minimum absorption.