轨道交通网络中乘客的出行受网络结构和运营状况变化的影响,个体出行偏好对这些变化的响应也各异。为分析轨道交通远郊区段计划性停运对常乘客的出行转移影响,本文提出考虑转移类型和转移比例的乘客出行特征刻画方法,结合时段属性生成...轨道交通网络中乘客的出行受网络结构和运营状况变化的影响,个体出行偏好对这些变化的响应也各异。为分析轨道交通远郊区段计划性停运对常乘客的出行转移影响,本文提出考虑转移类型和转移比例的乘客出行特征刻画方法,结合时段属性生成乘客特征—时序(FeatureTemporal,F-T)矩阵;通过改进的欧氏距离计算F-T矩阵间的相似性,实现F-T矩阵的相似性度量;提出一种基于相似度矩阵的K-Means聚类和层次聚类相结合的两步聚类方法(Two-step Clustering of K-Means Clustering and Hierarchical Clustering,KMHC)划分乘客影响群体,分析影响乘客出行转移的因素;以新冠肺炎疫情期间上海轨道交通11号线昆山段停运作为实例,对本文方法进行验证。研究结果表明:昆山段停运后,常乘客呈现出5种主要的出行转移影响群体,占常乘客总数的94.4%;各影响群体的转移距离、通勤时间和出行频率差异明显,是影响区段停运后常乘客出行选择的重要因素。本文方法可为其他计划性停运场景提供借鉴和参考,也可为区段停运后的网络客流变化预测,行车和客运组织方案优化提供支撑。展开更多
With the progress of deep learning research, convolutional neural networks have become the most important method in feature extraction. How to effectively classify and recognize the extracted features will directly af...With the progress of deep learning research, convolutional neural networks have become the most important method in feature extraction. How to effectively classify and recognize the extracted features will directly affect the performance of the entire network. Traditional processing methods include classification models such as fully connected network models and support vector machines. In order to solve the problem that the traditional convolutional neural network is prone to over-fitting for the classification of small samples, a CNN-TWSVM hybrid model was proposed by fusing the twin support vector machine (TWSVM) with higher computational efficiency as the CNN classifier, and it was applied to the traffic sign recognition task. In order to improve the generalization ability of the model, the wavelet kernel function is introduced to deal with the nonlinear classification task. The method uses the network initialized from the ImageNet dataset to fine-tune the specific domain and intercept the inner layer of the network to extract the high abstract features of the traffic sign image. Finally, the TWSVM based on wavelet kernel function is used to identify the traffic signs, so as to effectively solve the over-fitting problem of traffic signs classification. On GTSRB and BELGIUMTS datasets, the validity and generalization ability of the improved model is verified by comparing with different kernel functions and different SVM classifiers.展开更多
文摘轨道交通网络中乘客的出行受网络结构和运营状况变化的影响,个体出行偏好对这些变化的响应也各异。为分析轨道交通远郊区段计划性停运对常乘客的出行转移影响,本文提出考虑转移类型和转移比例的乘客出行特征刻画方法,结合时段属性生成乘客特征—时序(FeatureTemporal,F-T)矩阵;通过改进的欧氏距离计算F-T矩阵间的相似性,实现F-T矩阵的相似性度量;提出一种基于相似度矩阵的K-Means聚类和层次聚类相结合的两步聚类方法(Two-step Clustering of K-Means Clustering and Hierarchical Clustering,KMHC)划分乘客影响群体,分析影响乘客出行转移的因素;以新冠肺炎疫情期间上海轨道交通11号线昆山段停运作为实例,对本文方法进行验证。研究结果表明:昆山段停运后,常乘客呈现出5种主要的出行转移影响群体,占常乘客总数的94.4%;各影响群体的转移距离、通勤时间和出行频率差异明显,是影响区段停运后常乘客出行选择的重要因素。本文方法可为其他计划性停运场景提供借鉴和参考,也可为区段停运后的网络客流变化预测,行车和客运组织方案优化提供支撑。
文摘With the progress of deep learning research, convolutional neural networks have become the most important method in feature extraction. How to effectively classify and recognize the extracted features will directly affect the performance of the entire network. Traditional processing methods include classification models such as fully connected network models and support vector machines. In order to solve the problem that the traditional convolutional neural network is prone to over-fitting for the classification of small samples, a CNN-TWSVM hybrid model was proposed by fusing the twin support vector machine (TWSVM) with higher computational efficiency as the CNN classifier, and it was applied to the traffic sign recognition task. In order to improve the generalization ability of the model, the wavelet kernel function is introduced to deal with the nonlinear classification task. The method uses the network initialized from the ImageNet dataset to fine-tune the specific domain and intercept the inner layer of the network to extract the high abstract features of the traffic sign image. Finally, the TWSVM based on wavelet kernel function is used to identify the traffic signs, so as to effectively solve the over-fitting problem of traffic signs classification. On GTSRB and BELGIUMTS datasets, the validity and generalization ability of the improved model is verified by comparing with different kernel functions and different SVM classifiers.