期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
A Multi-Domain Compression Radiative Transfer Model for the Fengyun-4 Geosynchronous Interferometric Infrared Sounder (GIIRS) 被引量:1
1
作者 Mingyue SU Chao LIU +6 位作者 Di DI Tianhao LE Yujia SUN Jun LI Feng LU Peng ZHANG Byung-Ju SOHN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1844-1858,共15页
Forward radiative transfer(RT)models are essential for atmospheric applications such as remote sensing and weather and climate models,where computational efficiency becomes equally as important as accuracy for high-re... Forward radiative transfer(RT)models are essential for atmospheric applications such as remote sensing and weather and climate models,where computational efficiency becomes equally as important as accuracy for high-resolution hyperspectral measurements that need rigorous RT simulations for thousands of channels.This study introduces a fast and accurate RT model for the hyperspectral infrared(HIR)sounder based on principal component analysis(PCA)or machine learning(i.e.,neural network,NN).The Geosynchronous Interferometric Infrared Sounder(GIIRS),the first HIR sounder onboard the geostationary Fengyun-4 satellites,is considered to be a candidate example for model development and validation.Our method uses either PCA or NN(PCA/NN)twice for the atmospheric transmittance and radiance,respectively,to reduce the number of independent but similar simulations to accelerate RT simulations;thereby,it is referred to as a multi-domain compression model.The first PCA/NN gives monochromatic gas transmittance in both spectral and atmospheric pressure domains for each gas independently.The second PCA/NN is performed in the traditional spectral radiance domain.Meanwhile,a new method is introduced to choose representative variables for the PCA/NN scheme developments.The model is three orders of magnitude faster than the standard line-by-line-based simulations with averaged brightness temperature difference(BTD)less than 0.1 K,and the compressions based on PCA or NN methods result in comparable efficiency and accuracy.Our fast model not only avoids an excessively complicated transmittance scheme by using PCA/NN but is also highly flexible for hyperspectral instruments with similar spectral ranges simply by updating the corresponding spectral response functions. 展开更多
关键词 radiative transfer model principal component analysis machine learning GIIRS
下载PDF
Temperature field model in surface grinding: a comparative assessment 被引量:1
2
作者 Min Yang Ming Kong +10 位作者 Changhe Li Yunze Long Yanbin Zhang Shubham Sharma Runze Li Teng Gao Mingzheng Liu Xin Cui Xiaoming Wang Xiao Ma Yuying Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期314-373,共60页
Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality.However,a significant technical challenge in grinding is the potential increas... Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality.However,a significant technical challenge in grinding is the potential increase in temperature due to high specific energy,which can lead to surface thermal damage.Therefore,ensuring control over the surface integrity of workpieces during grinding becomes a critical concern.This necessitates the development of temperature field models that consider various parameters,such as workpiece materials,grinding wheels,grinding parameters,cooling methods,and media,to guide industrial production.This study thoroughly analyzes and summarizes grinding temperature field models.First,the theory of the grinding temperature field is investigated,classifying it into traditional models based on a continuous belt heat source and those based on a discrete heat source,depending on whether the heat source is uniform and continuous.Through this examination,a more accurate grinding temperature model that closely aligns with practical grinding conditions is derived.Subsequently,various grinding thermal models are summarized,including models for the heat source distribution,energy distribution proportional coefficient,and convective heat transfer coefficient.Through comprehensive research,the most widely recognized,utilized,and accurate model for each category is identified.The application of these grinding thermal models is reviewed,shedding light on the governing laws that dictate the influence of the heat source distribution,heat distribution,and convective heat transfer in the grinding arc zone on the grinding temperature field.Finally,considering the current issues in the field of grinding temperature,potential future research directions are proposed.The aim of this study is to provide theoretical guidance and technical support for predicting workpiece temperature and improving surface integrity. 展开更多
关键词 grinding temperature uniform continuous temperature field nonuniform discontinuous temperature field heat source distribution model grinding heat distribution coefficient model convective heat transfer coefficient model
下载PDF
Application of Wavelength Selection Combined with DS Algorithm for Model Transfer between NIR Instruments
3
作者 Honghong Wang Zhixin Xiong +2 位作者 Yunchao Hu Zhijian Liu Long Liang 《Journal of Renewable Materials》 SCIE EI 2023年第6期2713-2727,共15页
This study aims to realize the sharing of near-infrared analysis models of lignin and holocellulose content in pulp wood on two different batches of spectrometers and proposes a combined algorithm of SPA-DS,MCUVE-DS a... This study aims to realize the sharing of near-infrared analysis models of lignin and holocellulose content in pulp wood on two different batches of spectrometers and proposes a combined algorithm of SPA-DS,MCUVE-DS and SiPLS-DS.The Successive Projection Algorithm(SPA),the Monte-Carlo of Uninformative Variable Elimination(MCUVE)and the Synergy Interval Partial Least Squares(SiPLS)algorithms are respectively used to reduce the adverse effects of redundant information in the transmission process of the full spectrum DS algorithm model.These three algorithms can improve model transfer accuracy and efficiency and reduce the manpower and material consumption required for modeling.These results show that the modeling effects of the characteristic wavelengths screened by the SPA,MCUVE and SiPLS algorithms are all greatly improved compared with the full-spectrum modeling,in which the SPA-PLS result in the best prediction with RPDs above 6.5 for both components.The three wavelength selection methods combined with the DS algorithm are used to transfer the models of the two instruments.Among them,the MCUVE combined with the DS algorithm has the best transfer effect.After the model transfer,the RMSEP of lignin is 0.701,and the RMSEP of holocellulose is 0.839,which was improved significantly than the full-spectrum model transfer of 0.759 and 0.918. 展开更多
关键词 Near infrared spectroscopy HOLOCELLULOSE LIGNIN model transfer wavelength optimization direct standardization algorithm
下载PDF
Numerical Analysis on Temperature Distribution in a Single Cell of PEFC Operated at Higher Temperature by1D Heat Transfer Model and 3D Multi-Physics Simulation Model
4
作者 Akira Nishimura Kyohei Toyoda +1 位作者 Daiki Mishima Eric Hu 《Energy and Power Engineering》 CAS 2023年第5期205-227,共23页
This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interf... This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction. 展开更多
关键词 PEFC Heat Transfer model Temperature Distribution Numerical Simulation High Temperature Operation
下载PDF
Consistency of Tropospheric Water Vapor between Reanalyses and Himawari-8/AHI Measurements over East Asia
5
作者 Di DI Jun LI +3 位作者 Yunheng XUE Min MIN Bo LI Zhenglong LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期19-38,共20页
High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets t... High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets to depict multilayer tropospheric water vapor(WV),thereby enhancing our understanding of the deficiencies of WV in reanalysis datasets.Based on daily measurements from the Advanced Himawari Imager(AHI)onboard the Himawari-8 satellite in 2016,the bias features of multilayer WV from six reanalysis datasets over East Asia are thoroughly evaluated.The assessments show that wet biases exist in the upper troposphere in all six reanalysis datasets;in particular,these biases are much larger in summer.Overall,we find better depictions of WV in the middle troposphere than in the upper troposphere.The accuracy of WV in the ERA5 dataset is the highest,in terms of the bias magnitude,dispersion,and pattern similarity.The characteristics of the WV bias over the Tibetan Plateau are significantly different from those over other parts of East Asia.In addition,the reanalysis datasets all capture the shift of the subtropical high very well,with ERA5 performing better overall. 展开更多
关键词 AHI reanalysis dataset multilayer water vapor assessment radiative transfer model
下载PDF
The efficacy of the seamless transfer of care model to apply for the patients with cerebral apoplexy in China 被引量:9
6
作者 Wei Xie Zhen-Hua Zhao +1 位作者 Qing-Min Yang Fang-Hong Wei 《International Journal of Nursing Sciences》 2015年第1期52-57,共6页
Purpose:To evaluate the efficacy of the Seamless Transfer of Care Model(STCM)to improve readmission occurrence of patients withstroke.Methods:The sample was comprised of fifty-nine subjects with stroke who were hospit... Purpose:To evaluate the efficacy of the Seamless Transfer of Care Model(STCM)to improve readmission occurrence of patients withstroke.Methods:The sample was comprised of fifty-nine subjects with stroke who were hospitalized in the geriatric and neurology departments of a large university hospital in China.Subjects were allocated to an STCM group(n=30)or a routine care(control)group(n=29).Results:Compared with the control group,the STCM group had a higher quality of life(p<0.05),higher compliance(p<0.05)and a lower readmission rate(p<0.05).Conclusion:Based on our results,the application of the STCM in Chinese stroke patients can improve quality of life and compliance,and reduce readmission rate. 展开更多
关键词 Stroke Seamless transfer of care model Readmission occurrence
下载PDF
A Simplified Scheme of the Generalized Layered Radiative Transfer Model 被引量:2
7
作者 戴秋丹 孙菽芬 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第2期213-226,共14页
In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted ... In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted sky diffuse radiation, as well as of canopy morphology, and in turn saves computer resources. Results from the SGRTM agree perfectly with those of the GRTM. Secondly, by applying the linear superposition principle of the optics and by using the basic solutions of the GRTM for radiative transfer within the canopy under the condition of assumed zero soil reflectance, two sets of explicit analytical solutions of radiative transfer within the canopy with any soil reflectance magnitude are derived: one for incident diffuse, and the other for direct beam radiation. The explicit analytical solutions need two sets of basic solutions of canopy reflectance and transmittance under zero soil reflectance, run by the model for both diffuse and direct beam radiation. One set of basic solutions is the canopy reflectance αf (written as α1 for direct beam radiation) and transmittance βf (written as β1 for direction beam radiation) with zero soil reflectance for the downward radiation from above the canopy (i.e. sky), and the other set is the canopy reflectance (αb) and transmittance βb for the upward radiation from below the canopy (i.e., ground). Under the condition of the same plant architecture in the vertical layers, and the same leaf adaxial and abaxial optical properties in the canopies for the uniform diffuse radiation, the explicit solutions need only one set of basic solutions, because under this condition the two basic solutions are equal, i.e., αf = αb and βf = βb. Using the explicit analytical solutions, the fractions of any kind of incident solar radiation reflected from (defined as surface albedo, or canopy reflectance), transmitted through (defined as canopy transmittance), and absorbed by (defined as canopy absorptance) the canopy and other properties pertinent to the radiative transfer within the canopy can be estimated easily on the ground surface below the canopy (soil or snow surface) with any reflectance magnitudes. The simplified transfer model is proven to have a similar accuracy compared to the detailed model, as well as very efficient computing. 展开更多
关键词 generalized layered canopy radiative transfer model simplified model analytical solutions basic solutions adaxial abaxial leaf optical properties
下载PDF
A Comparison of Two Canopy Radiative Models in Land Surface Processes 被引量:1
8
作者 戴秋丹 孙菽芬 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第3期421-434,共14页
This paper compares the predictions by two radiative transfer models-the two-stream approximation model and the generalized layered model (developed by the authors) in land surface processes -for different canopies ... This paper compares the predictions by two radiative transfer models-the two-stream approximation model and the generalized layered model (developed by the authors) in land surface processes -for different canopies under direct or diffuse radiation conditions. The comparison indicates that there are significant differences between the two models, especially in the near infrared (NIR) band. Results of canopy reflectance from the two-stream model are larger than those from the generalized model. However, results of canopy absorptance from the two-stream model are larger in some cases and smaller in others compared to those from the generalized model, depending on the cases involved. In the visible (VIS) band, canopy reflectance is smaller and canopy absorptance larger from the two-stream model compared to the generalized model when the Leaf Area Index (LAI) is low and soil reflectance is high. In cases of canopies with vertical leaf angles, the differences of reflectance and absorptance in the VIS and NIR bands between the two models are especially large. Two commonly occurring cases, with which the two-stream model cannot deal accurately, are also investigated. One is for a canopy with different adaxial and abaxial leaf optical properties; and the other is for incident sky diffuse radiation with a non-uniform distribution. Comparison of the generalized model within the same canopy for both uniform and non-uniform incident diffuse radiation inputs shows smaller differences in general. However, there is a measurable difference between these radiation inputs for a canopy with high leaf angle. This indicates that the application of the two-stream model to a canopy with different adaxial and abaxial leaf optical properties will introduce non-negligible errors. 展开更多
关键词 generalized canopy radiative transfer model two-stream approximation model canopy reflectance canopy absorptance
下载PDF
CFD study of non-premixed swirling burners: Effect of turbulence models 被引量:1
9
作者 Erfan Khodabandeh Hesam Moghadasi +4 位作者 Mohsen Saffari Pour Mikael Ersson Par G.Jonsson Marc A.Rosen Alireza Rahbari 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1029-1038,共10页
This research investigates a numerical simulation of swirling turbulent non-premixed combustion.The effects on the combustion characteristics are examined with three turbulence models:namely as the Reynolds stress mod... This research investigates a numerical simulation of swirling turbulent non-premixed combustion.The effects on the combustion characteristics are examined with three turbulence models:namely as the Reynolds stress model,spectral turbulence analysis and Re-Normalization Group.In addition,the P-1 and discrete ordinate(DO)models are used to simulate the radiative heat transfer in this model.The governing equations associated with the required boundary conditions are solved using the numerical model.The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities.Among different models proposed in this research,the Reynolds stress model with the Probability Density Function(PDF)approach is more accurate(nearly up to 50%)than other turbulent models for a swirling flow field.Regarding the effect of radiative heat transfer model,it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior.This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion. 展开更多
关键词 Computational Fluid Dynamics(CFD) Turbulent combustion Non-premixed flames Large eddy simulations Radiative heat transfer model modeling validation
下载PDF
A Generalized Layered Radiative Transfer Model in the Vegetation Canopy 被引量:6
10
作者 戴秋丹 孙菽芬 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第2期243-257,共15页
In this paper, a generalized layered model for radiation transfer in canopy with high vertical resolution is developed. Differing from the two-stream approximate radiation transfer model commonly used in the land surf... In this paper, a generalized layered model for radiation transfer in canopy with high vertical resolution is developed. Differing from the two-stream approximate radiation transfer model commonly used in the land surface models, the generalized model takes into account the effect of complicated canopy morphology and inhomogeneous optical properties of leaves on radiation transfer within the canopy. In the model, the total leaf area index (LAI) of the canopy is divided into many layers. At a given layer, the influences of diffuse radiation angle distributions and leaf angle distributions on radiation transfer within the canopy are considered. The derivation of equations serving the model are described in detail, and these can deal with various diffuse radiation transfers in quite broad categories of canopy with quite inhomogeneons vertical structures and uneven leaves with substantially different optical properties of adaxial and abaxial faces of the leaves. The model is used to simulate the radiation transfer for canopies with horizontal leaves to validate the generalized model. Results from the model are compared with those from the two-stream scheme, and differences between these two models are discussed. 展开更多
关键词 generalized model of radiation transfer non-uniform canopy distributions of leaf angle and radiation angle optical properties of adaxial and abaxial leaves
下载PDF
Model Parameter Transfer for Gear Fault Diagnosis under Varying Working Conditions 被引量:2
11
作者 Chao Chen Fei Shen +1 位作者 Jiawen Xu Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第1期168-180,共13页
Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and m... Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and make gear fault diagnosis(GFD)more and more challenging.In this paper,a novel model parameter transfer(NMPT)is proposed to boost the performance of GFD under varying working conditions.Based on the previous transfer strategy that controls empirical risk of source domain,this method further integrates the superiorities of multi-task learning with the idea of transfer learning(TL)to acquire transferable knowledge by minimizing the discrepancies of separating hyperplanes between one specific working condition(target domain)and another(source domain),and then transferring both commonality and specialty parameters over tasks to make use of source domain samples to assist target GFD task when sufficient labeled samples from target domain are unavailable.For NMPT implementation,insufficient target domain features and abundant source domain features with supervised information are fed into NMPT model to train a robust classifier for target GFD task.Related experiments prove that NMPT is expected to be a valuable technology to boost practical GFD performance under various working conditions.The proposed methods provides a transfer learning-based framework to handle the problem of insufficient training samples in target task caused by variable operation conditions. 展开更多
关键词 Gear fault diagnosis model parameter transfer Varying working conditions Least square support vector machine
下载PDF
Time lag characteristics of sap flow in seed-maize and their implications for modeling transpiration in an arid region of Northwest China 被引量:4
12
作者 BO Xiaodong DU Taisheng +1 位作者 DING Risheng Louise COMAS 《Journal of Arid Land》 SCIE CSCD 2017年第4期515-529,共15页
Plant capacity for water storage leads to time lags between basal stem sap flow and transpiration in various woody plants. Internal water storage depends on the sizes of woody plants. However, the changes and its infl... Plant capacity for water storage leads to time lags between basal stem sap flow and transpiration in various woody plants. Internal water storage depends on the sizes of woody plants. However, the changes and its influencing factors in time lags of basal stem flow during the development of herbaceous plants including crops remain unclear. A field experiment was conducted in an arid region of Northwest China to examine the time lag characteristics of sap flow in seed-maize and to calibrate the transpiration modeling. Cross-correlation analysis was used to estimate the time lags between stem sap flow and meteorological driving factors including solar radiation(R_s) and vapor pressure deficit of the air(VPD_(air)). Results indicate that the changes in seed-maize stem sap flow consistently lagged behind the changes in R_s and preceded the changes in VPD_(air) both on hourly and daily scales, suggesting that light-mediated stomatal closures drove sap flow responses. The time lag in the maize's sap flow differed significantly during different growth stages and the difference was potentially due to developmental changes in capacitance tissue and/or xylem during ontogenesis. The time lags between stem sap flow and R_s in both female plants and male plants corresponded to plant use of stored water and were independent of total plant water use. Time lags of sap flow were always longer in male plants than in female plants. Theoretically, dry soil may decrease the speed by which sap flow adjusts ahead of shifts in VPD_(air) in comparison with wet soil and also increase the speed by which sap flow adjusts to R_s. However, sap flow lags that were associated with R_s before irrigation and after irrigation in female plants did not shift. Time series analysis method provided better results for simulating seed-maize sap flow with advantages of allowing for fewer variables to be included. This approach would be helpful in improving the accuracy of estimation for canopy transpiration and conductance using meteorological measurements. 展开更多
关键词 seed-maize sap flow capacitance transfer function model time lag stored water use
下载PDF
An Improved Coupling of Numerical and Physical Models for Simulating Wave Propagation 被引量:1
13
作者 阳志文 柳淑学 李金宣 《China Ocean Engineering》 SCIE EI CSCD 2014年第1期1-16,共16页
An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is ap... An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and/or the mechanical capability of the wavemaker in area where nonlinearities or dispersion predominate. The overall performance and applicability of the coupling model has been experimentally validated by accounting for both regular and irregular waves and varying bathymetry. Experimental results show that the proposed numerical scheme and transfer function modulation method are efficient for the data transfer from the numerical model to the physical model up to a deterministic level. 展开更多
关键词 coupling numerical model physical model wave propagation transfer function modulation
下载PDF
Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum Model 被引量:1
14
作者 杨光 李伟 岑理相 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第1期27-30,共4页
Fine control of the dynamics of a quantum system is the key element to perform quantum information processing and coherent manipulations for atomic and molecular systems. We propose a control protocol using a tangentp... Fine control of the dynamics of a quantum system is the key element to perform quantum information processing and coherent manipulations for atomic and molecular systems. We propose a control protocol using a tangentpulse driven model and demonstrate that it indicates a desirable design, i.e., of being both fast and accurate for population transfer. As opposed to other existing strategies, a remarkable character of the present scheme is that high velocity of the nonadiabatic evolution itself not only will not lead to unwanted transitions but also can suppress the error caused by the truncation of the driving pulse. 展开更多
关键词 Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum model
下载PDF
Zonal Metamorphic Complex in the Tongulack Mountain Ridge, Altai, Russia, and Explanation ofIts Origin with the Help of Thermal Modelling
15
作者 G.G.Lepezin V.V.Reverdatto 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1998年第1期51-64,共14页
A moderate pressure/high temperature zonal metamorphic complex in the Tongulack Mountain Ridge, Altai, Russia, is described, and the applicability of the models of magmatic intrusion and fluid flow to explanation of i... A moderate pressure/high temperature zonal metamorphic complex in the Tongulack Mountain Ridge, Altai, Russia, is described, and the applicability of the models of magmatic intrusion and fluid flow to explanation of its origin discussed. The Precambrian complex was formed at 500–700°C and 3.0–5.5 kbars; it is a linear, 25–30 km wide, thermal anticline with a curved axis showing symmetric metamorphic zoning. The metamorphism was isochemical by its nature, as is corroborated by the chemical compositions of the rocks. Four zones can be recognized within the metamorphic complex: chloritic (on the peripheries), cordieritic, sillimanitic and staurolite-out (in the centre). The zones are separated by successive isograds: cordierite, staurolite-in or sillimanite and staurolite-out. It is argued that the origin of the metamorphic zoning can be explained best by a combined fluid-magmatic model; conductive heat flow from the intrusion predominated considerably over the fluid flux in heat transfer: the fluid flow rate was estimated as about 3 ? 10?9 g/cm2, ? s. The modern position of the axial region of the metamorphic belt is predicted to be lying roughly about 1.5 km above the roof of the intrusive body. 展开更多
关键词 Tongulack complex ALTAI RUSSIA moderate pressure/high temperature zonal metamorphism heat transfer modelling
下载PDF
CONVECTIVE-STRATIFORM RAINFALL PARTITION BY RADIANCE-DERIVED CLOUD CONTENT:A MODELING STUDY
16
作者 沈新勇 梅海霞 +1 位作者 庆涛 李小凡 《Journal of Tropical Meteorology》 SCIE 2016年第2期182-190,共9页
A new scheme that separates convective-stratiform rainfall is developed using threshold values of liquid water path(LWP) and ice water path(IWP).These cloud contents can be predicted with radiances at the Advanced Mic... A new scheme that separates convective-stratiform rainfall is developed using threshold values of liquid water path(LWP) and ice water path(IWP).These cloud contents can be predicted with radiances at the Advanced Microwave Sounding Unit(AMSU) channels(23.8,31.4,89,and 150 GHz) through linear regression models.The scheme is demonstrated by an analysis of a two-dimensional cloud resolving model simulation that is imposed by a forcing derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment(TOGA COARE).The rainfall is considered convective if associated LWP is larger than 1.91 mm or IWP is larger than1.70 mm.Otherwise,the rainfall is stratiform.The analysis of surface rainfall budget demonstrates that this new scheme is physically meaningful. 展开更多
关键词 cloud-resolving model simulation radiance transfer model radiance temperature simulation convective-stratiform rainfall partition liquid water path ice water path
下载PDF
Microwave Simulations of Precipitation Distribution with Two Radiative Transfer Models
17
作者 刘锦丽 林龙福 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1994年第4期470-478,共9页
Two microwave radiative transfer models of precipitating cloud are used to simulate the microwave upwelling radiances emerging from precipitating clouds. Comparison of the simulation results shows that significant dif... Two microwave radiative transfer models of precipitating cloud are used to simulate the microwave upwelling radiances emerging from precipitating clouds. Comparison of the simulation results shows that significant difference of microwave upwelling radiances exists between these two radiative transfer models. Analysis of these differences in different cloud and precipitation conditions shows that it is complicated but has certain trend for different microwave frequencies. The results may be useful to quantitative rainfall rate retrieval of real precipitating clouds. 展开更多
关键词 Radiative transfer models PRECIPITATION Brightness temperature
下载PDF
A Mathematical Model of Heat Transfer in Problems of Pipeline Plugging Agent Freezing Induced by Liquid Nitrogen
18
作者 Yafei Li Yanjun Liu 《Fluid Dynamics & Materials Processing》 EI 2022年第3期775-788,共14页
A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to ... A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to form a plug or two plugs at a position upstream and downstream from a location where work a modification or a repair must be executed.Based on the variable separation method,the present model aims to solve the related coupled heat conduction and moving-boundary phase change problem.An experiment with a 219 mm long pipe,where water was taken as the plugging agent,is presented to demonstrate the relevance and reliability of the proposed model(results show that the error is within 18%).Thereafter,the model is applied to predict the cooling and freezing process of pipelines with different inner diameters at different liquid nitrogen refrigeration temperatures when water is used as the plugging agent. 展开更多
关键词 Pipeline freezing and plugging liquid nitrogen refrigeration heat transfer model transient temperature field phase change prediction
下载PDF
Research on the Application of the Radiative Transfer Model Based on Deep Neural Network in One-dimensional Variational Algorithm
19
作者 贺秋瑞 张瑞玲 +1 位作者 李骄阳 王振占 《Journal of Tropical Meteorology》 SCIE 2022年第3期326-342,共17页
As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensional variational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important pos... As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensional variational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important position in the field of microwave remote sensing.Among algorithm parameters affecting the performance of the 1 DVAR algorithm,the accuracy of the microwave radiative transfer model for calculating the simulated brightness temperature is the fundamental constraint on the retrieval accuracies of the 1 DVAR algorithm for retrieving atmospheric parameters.In this study,a deep neural network(DNN)is used to describe the nonlinear relationship between atmospheric parameters and satellite-based microwave radiometer observations,and a DNN-based radiative transfer model is developed and applied to the 1 DVAR algorithm to carry out retrieval experiments of the atmospheric temperature and humidity profiles.The retrieval results of the temperature and humidity profiles from the Microwave Humidity and Temperature Sounder(MWHTS)onboard the Feng-Yun-3(FY-3)satellite show that the DNN-based radiative transfer model can obtain higher accuracy for simulating MWHTS observations than that of the operational radiative transfer model RTTOV,and also enables the 1 DVAR algorithm to obtain higher retrieval accuracies of the temperature and humidity profiles.In this study,the DNN-based radiative transfer model applied to the 1 DVAR algorithm can fundamentally improve the retrieval accuracies of atmospheric parameters,which may provide important reference for various applied studies in atmospheric sciences. 展开更多
关键词 one-dimensional variational algorithm radiative transfer model deep neural network FY-3 MWHTS temperature and humidity profiles
下载PDF
NUMERICAL MODELING OF RADIATIVE TRANSFER FOR MICROWAVE REMOTE SENSING
20
作者 Jin Yaqiu, Zhang Jurong, Zhao Renyu (Department of Electronic Engineering, Fudan University) (Changchun Institute of Geography, Academia Sinica) 《遥感信息》 CSCD 1990年第A02期30-31,共2页
An overall vector radiative transfer theory was developed for numerical modeling, in both active and passive microwave remote sensing. The Theory and approaches are briefly summerized.To quantitatively understand scat... An overall vector radiative transfer theory was developed for numerical modeling, in both active and passive microwave remote sensing. The Theory and approaches are briefly summerized.To quantitatively understand scattering and thermal emission from targets in active and passive remote sensing, we have developed an overall vector radiative transfer theory for a set of theoretical models of discrete scatterer and continuous random media for the earth terrain (wet soil, vegetation, snow, sea-ice, etc.) and atmosphere, and numerical approaches for simulation, data analysis, and parameter sensitivity test. Our numerical results favorably agreed with experimental data in microwave re mote sensing of various earth surfaces. Main approaches are briefly summerized herewith. 展开更多
关键词 VRT NUMERICAL modelING OF RADIATIVE TRANSFER FOR MICROWAVE REMOTE SENSING
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部