期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Deep Residual Joint Transfer Strategy for Cross-Condition Fault Diagnosis of Rolling Bearings 被引量:1
1
作者 Songjun Han Zhipeng Feng 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第1期42-51,共10页
Rolling bearings are key components of the drivetrain in wind turbines,and their health is critical to wind turbine operation.In practical diagnosis tasks,the vibration signal is usually interspersed with many disturb... Rolling bearings are key components of the drivetrain in wind turbines,and their health is critical to wind turbine operation.In practical diagnosis tasks,the vibration signal is usually interspersed with many disturbing components,and the variation of operating conditions leads to unbalanced data distribution among different conditions.Although intelligent diagnosis methods based on deep learning have been intensively studied,it is still challenging to diagnose rolling bearing faults with small amounts of samples.To address the above issue,we introduce the deep residual joint transfer strategy method for the cross-condition fault diagnosis of rolling bearings.One-dimensional vibration signals are pre-processed by overlapping feature extraction techniques to fully extract fault characteristics.The deep residual network is trained in training tasks with sufficient samples,for fault pattern classification.Subsequently,three transfer strategies are used to explore the generalizability and adaptability of the pre-trained models to the data distribution in target tasks.Among them,the feature transferability between different tasks is explored by model transfer,and it is validated that minimizing data differences of tasks through a dual-stream adaptation structure helps to enhance generalization of the models to the target tasks.In the experiments of rolling bearing faults with unbalanced data conditions,localized faults of motor bearings and planet bearings are successfully identified,and good fault classification results are achieved,which provide guidance for the cross-condition fault diagnosis of rolling bearings with small amounts of training data. 展开更多
关键词 fault diagnosis feature transferability rolling bearing transfer strategy wind turbine
下载PDF
A Comprehensive Investigation of Machine Learning Feature Extraction and ClassificationMethods for Automated Diagnosis of COVID-19 Based on X-ray Images 被引量:7
2
作者 Mazin Abed Mohammed Karrar Hameed Abdulkareem +6 位作者 Begonya Garcia-Zapirain Salama A.Mostafa Mashael S.Maashi Alaa S.Al-Waisy Mohammed Ahmed Subhi Ammar Awad Mutlag Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2021年第3期3289-3310,共22页
The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,whi... The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019. 展开更多
关键词 Coronavirus disease COVID-19 diagnosis machine learning convolutional neural networks resnet50 artificial neural network support vector machine X-ray images feature transfer learning
下载PDF
Transfer Learning Algorithm Design for Feature Transfer Problem in Motor Imagery Brain-computer Interface
3
作者 Yu Zhang Huaqing Li +3 位作者 Heng Dong Zheng Dai Xing Chen Zhuoming Li 《China Communications》 SCIE CSCD 2022年第2期39-46,共8页
The non-stationary of the motor imagery electroencephalography(MI-EEG)signal is one of the main limitations for the development of motor imagery brain-computer interfaces(MI-BCI).The nonstationary of the MI-EEG signal... The non-stationary of the motor imagery electroencephalography(MI-EEG)signal is one of the main limitations for the development of motor imagery brain-computer interfaces(MI-BCI).The nonstationary of the MI-EEG signal and the changes of the experimental environment make the feature distribution of the testing set and training set deviates,which reduces the classification accuracy of MI-BCI.In this paper,we propose a Kullback–Leibler divergence(KL)-based transfer learning algorithm to solve the problem of feature transfer,the proposed algorithm uses KL to measure the similarity between the training set and the testing set,adds support vector machine(SVM)classification probability to classify and weight the covariance,and discards the poorly performing samples.The results show that the proposed algorithm can significantly improve the classification accuracy of the testing set compared with the traditional algorithms,especially for subjects with medium classification accuracy.Moreover,the algorithm based on transfer learning has the potential to improve the consistency of feature distribution that the traditional algorithms do not have,which is significant for the application of MI-BCI. 展开更多
关键词 brain-computer interface motor imagery feature transfer transfer learning domain adaptation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部