An efficient and rapid Agrobacterium tumefaciens-mediated transformation protocol was developed to generate activation-tagged mutant lines with the aim of large-scale functional analysis of the potato genome. The expl...An efficient and rapid Agrobacterium tumefaciens-mediated transformation protocol was developed to generate activation-tagged mutant lines with the aim of large-scale functional analysis of the potato genome. The explants were inoculated with an Agrobacterium strain harboring the binary plasmid pSKI074 containing four CaMV 35S enhancers in the T-DNA region which activates the downstream genes in the host plant after its integration. Various parameters investigated to increase transformation efficiency were the type and age of explant, cultivar, hormone combinations, preculture of explants, period of co-cultivation with bacteria and concentration of bacterial cultures used for transformation. Stem explants from 5 week old plantlets of cv. Bintje which had undergone phytohormone pretreatment for 4 days, inoculation with diluted bacterial concentration of OD600 = 0.2 containing acetosyringone followed by 2 days of co-cultivation and selection in media with IAA and trans-zeatin all helped in greatly improving the transformation efficiency. The total time required from infection to rooted shoots was 6-7 weeks. Initial evidence for stable integration and expression of the transgenes by PCR analysis showed that over 93% of the regenerated lines were transgenic and this was confirmed by Southern hybridization.展开更多
针对主流Transformer网络仅对输入像素块做自注意力计算而忽略了不同像素块间的信息交互,以及输入尺度单一导致局部特征细节模糊的问题,本文提出一种基于Transformer并用于处理视觉任务的主干网络ConvFormer. ConvFormer通过所设计的多...针对主流Transformer网络仅对输入像素块做自注意力计算而忽略了不同像素块间的信息交互,以及输入尺度单一导致局部特征细节模糊的问题,本文提出一种基于Transformer并用于处理视觉任务的主干网络ConvFormer. ConvFormer通过所设计的多尺度混洗自注意力模块(Channel-Shuffle and Multi-Scale attention,CSMS)和动态相对位置编码模块(Dynamic Relative Position Coding,DRPC)来聚合多尺度像素块间的语义信息,并在前馈网络中引入深度卷积提高网络的局部建模能力.在公开数据集ImageNet-1K,COCO 2017和ADE20K上分别进行图像分类、目标检测和语义分割实验,ConvFormer-Tiny与不同视觉任务中同量级最优网络RetNetY-4G,Swin-Tiny和ResNet50对比,精度分别提高0.3%,1.4%和0.5%.展开更多
文摘An efficient and rapid Agrobacterium tumefaciens-mediated transformation protocol was developed to generate activation-tagged mutant lines with the aim of large-scale functional analysis of the potato genome. The explants were inoculated with an Agrobacterium strain harboring the binary plasmid pSKI074 containing four CaMV 35S enhancers in the T-DNA region which activates the downstream genes in the host plant after its integration. Various parameters investigated to increase transformation efficiency were the type and age of explant, cultivar, hormone combinations, preculture of explants, period of co-cultivation with bacteria and concentration of bacterial cultures used for transformation. Stem explants from 5 week old plantlets of cv. Bintje which had undergone phytohormone pretreatment for 4 days, inoculation with diluted bacterial concentration of OD600 = 0.2 containing acetosyringone followed by 2 days of co-cultivation and selection in media with IAA and trans-zeatin all helped in greatly improving the transformation efficiency. The total time required from infection to rooted shoots was 6-7 weeks. Initial evidence for stable integration and expression of the transgenes by PCR analysis showed that over 93% of the regenerated lines were transgenic and this was confirmed by Southern hybridization.
文摘针对主流Transformer网络仅对输入像素块做自注意力计算而忽略了不同像素块间的信息交互,以及输入尺度单一导致局部特征细节模糊的问题,本文提出一种基于Transformer并用于处理视觉任务的主干网络ConvFormer. ConvFormer通过所设计的多尺度混洗自注意力模块(Channel-Shuffle and Multi-Scale attention,CSMS)和动态相对位置编码模块(Dynamic Relative Position Coding,DRPC)来聚合多尺度像素块间的语义信息,并在前馈网络中引入深度卷积提高网络的局部建模能力.在公开数据集ImageNet-1K,COCO 2017和ADE20K上分别进行图像分类、目标检测和语义分割实验,ConvFormer-Tiny与不同视觉任务中同量级最优网络RetNetY-4G,Swin-Tiny和ResNet50对比,精度分别提高0.3%,1.4%和0.5%.