Rice husk biochar inoculated with Bacillus megaterium(BM)(referred to as BM-inoculated biochar, BMB) and uninoculated rice husk biochar(RHB) were added to soil at two rates(0.5%, as BMB1 and RHB1, respectively, and 1....Rice husk biochar inoculated with Bacillus megaterium(BM)(referred to as BM-inoculated biochar, BMB) and uninoculated rice husk biochar(RHB) were added to soil at two rates(0.5%, as BMB1 and RHB1, respectively, and 1.0%, as BMB2 and RHB2, respectively) in an incubation experiment to comprehensively evaluate their effects on basic soil properties, phosphorus(P) fractions, bacterial community composition, and P-cycling genes.展开更多
Non-equilibrium solidification structures of Cu55Ni45 and Cu55Ni43Co2 alloys were prepared by the molten glass purification cycle superheating method.The variation of the recalescence phenomenon with the degree of und...Non-equilibrium solidification structures of Cu55Ni45 and Cu55Ni43Co2 alloys were prepared by the molten glass purification cycle superheating method.The variation of the recalescence phenomenon with the degree of undercooling in the rapid solidification process was investigated using an infrared thermometer.The addition of the Co element affected the evolution of the recalescence phenomenon in Cu-Ni alloys.The images of the solid-liquid interface migration during the rapid solidification of supercooled melts were captured by using a high-speed camera.The solidification rate of Cu-Ni alloys,with the addition of Co elements,was explored.Finally,the grain refinement structure with low supercooling was characterised using electron backscatter diffraction(EBSD).The effect of Co on the microstructural evolution during nonequilibrium solidification of Cu-Ni alloys under conditions of small supercooling is investigated by comparing the microstructures of Cu55Ni45 and Cu55Ni43Co2 alloys.The experimental results show that the addition of a small amount of Co weakens the recalescence behaviour of the Cu55Ni45 alloy and significantly reduces the thermal strain in the rapid solidification phase.In the rapid solidification phase,the thermal strain is greatly reduced,and there is a significant increase in the characteristic undercooling degree.Furthermore,the addition of Co and the reduction of Cu not only result in a lower solidification rate of the alloy,but also contribute to the homogenisation of the grain size.展开更多
Green technological innovation is crucial for the manufacturing industry’s green transformation and sustainable development.This study examines the impact of executive overconfidence on corporate green innovation,foc...Green technological innovation is crucial for the manufacturing industry’s green transformation and sustainable development.This study examines the impact of executive overconfidence on corporate green innovation,focusing on the internal drivers of corporate innovation and using a sample of Shanghai and Shenzhen A-share listed manufacturing companies from 2013 to 2020.We further examine the mediating role of digital transformation and the moderating role of external attention.The findings indicate that executive overconfidence promotes corporate green technological innovation.Overconfident executives enhance green innovation by accelerating digital transformation.Moreover,external attention from analysts and media positively moderates the relationship between executive overconfidence and corporate green innovation.Heterogeneity analysis reveals that the positive impact of executive overconfidence on green innovation is more significant in non-state-owned enterprises,high-tech firms,and enterprises with lower pollution levels.展开更多
In this study, the precipitation transformation and age hardening of solution-treated Mg-9Gd-4Y-2Zn-0.5Zr(wt.%) alloy were investigated at different aging treatment parameters. The precipitation sequences of the alloy...In this study, the precipitation transformation and age hardening of solution-treated Mg-9Gd-4Y-2Zn-0.5Zr(wt.%) alloy were investigated at different aging treatment parameters. The precipitation sequences of the alloy aged at 200℃, 250℃ and 300℃ are β’’(DO19) → β’(BCO) → β(FCC), β’’(DO19) → β’(BCO) → β_(1)(FCC) → β(FCC) and β(FCC), respectively. The streaks sequences of the alloy aged at 200℃, 250℃ and 300℃ are SF, SF → 14H-LPSO and SF → 14H-LPSO, respectively. For the alloy aged at 200℃ and 250℃, the increase in hardness with increasing aging time is contributed from the increase in precipitate volume fraction and the transformation from β’’ to β’ phase with basal → prismatic and spherical → spindle-like precipitate changes. The decrease in hardness after the peak-aging stage is attributed to the appearance of micro-sized β precipitates. Because of the smaller size of precipitates and the triangular arrangement of β’ precipitate, the hardness of the alloy aged at 200℃ is higher than that aged at 250℃. For the alloy aged at 300℃, the appearance of only micro-sized β precipitate and its coarsening with increasing aging time leads to the lowest hardness and an overall decrease in hardness with the aging time.展开更多
Heat transfer in an Eyring-Powell fluid that conducts electricity and flows past an exponentially growing sheet is considered.As the sheet is stretched in the x direction,the flow develops in the region with y>0.Th...Heat transfer in an Eyring-Powell fluid that conducts electricity and flows past an exponentially growing sheet is considered.As the sheet is stretched in the x direction,the flow develops in the region with y>0.The problem is tackled through a set of partial differential equations accounting for Magnetohydrodynamics(MHD),radiation and Joule heating effects,which are converted into a set of equivalent ordinary differential equations through a similarity transformation.The converted problem is solved in MATLAB in the framework a fourth order accurate integration scheme.It is found that the thermal relaxation period is inversely proportional to the thickness of the thermal boundary layer,whereas the Eckert-number displays the opposite trend.As this characteristic number grows,the temperature within the channel increases.展开更多
240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge ef...240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.展开更多
Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinat...Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.展开更多
Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect...Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.展开更多
Hemorrhagic transformation is a major complication of large-artery atheroscle rotic stroke(a major ischemic stro ke subtype)that wo rsens outcomes and increases mortality.Disruption of the gut microbiota is an importa...Hemorrhagic transformation is a major complication of large-artery atheroscle rotic stroke(a major ischemic stro ke subtype)that wo rsens outcomes and increases mortality.Disruption of the gut microbiota is an important feature of stroke,and some specific bacteria and bacterial metabolites may contribute to hemorrhagic transformation pathogenesis.We aimed to investigate the relationship between the gut microbiota and hemorrhagic transformation in largearte ry atheroscle rotic stro ke.An observational retrospective study was conducted.From May 2020 to September 2021,blood and fecal samples were obtained upon admission from 32 patients with first-ever acute ischemic stroke and not undergoing intravenous thrombolysis or endovascular thrombectomy,as well as 16 healthy controls.Patients with stro ke who developed hemorrhagic transfo rmation(n=15)were compared to those who did not develop hemorrhagic transformation(n=17)and with healthy controls.The gut microbiota was assessed through 16S ribosomal ribonucleic acid sequencing.We also examined key components of the lipopolysaccharide pathway:lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.We observed that bacterial diversity was decreased in both the hemorrhagic transformation and non-hemorrhagic transfo rmation group compared with the healthy controls.The patients with ischemic stro ke who developed hemorrhagic transfo rmation exhibited altered gut micro biota composition,in particular an increase in the relative abundance and dive rsity of members belonging to the Enterobacteriaceae family.Plasma lipopolysaccharide and lipopolysaccharide-binding protein levels were higher in the hemorrhagic transformation group compared with the non-hemorrhagic transfo rmation group.lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14 concentrations were associated with increased abundance of Enterobacte riaceae.Next,the role of the gut microbiota in hemorrhagic transformation was evaluated using an experimental stroke rat model.In this model,transplantation of the gut microbiota from hemorrhagic transformation rats into the recipient rats triggered higher plasma levels of lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.Ta ken togethe r,our findings demonstrate a noticeable change in the gut microbiota and lipopolysaccharide-related inflammatory response in stroke patients with hemorrhagic transformation.This suggests that maintaining a balanced gut microbiota may be an important factor in preventing hemorrhagic transfo rmation after stro ke.展开更多
The abnormality of the p53 tumor suppressor is crucial in lung cancer development,because p53 regulates target gene promoters to combat cancer.Recent studies have shown extensive p53 binding to enhancer elements.Howev...The abnormality of the p53 tumor suppressor is crucial in lung cancer development,because p53 regulates target gene promoters to combat cancer.Recent studies have shown extensive p53 binding to enhancer elements.However,whether p53 exerts a tumor suppressor role by shaping the enhancer landscape remains poorly understood.In the current study,we employed several functional genomics approaches to assess the enhancer activity at p53 binding sites throughout the genome based on our established TP53 knockout(KO)human bronchial epithelial cells(BEAS-2B).A total of 943 active regular enhancers and 370 super-enhancers(SEs)disappeared upon the deletion of p53,indicating that p53 modulates the activity of hundreds of enhancer elements.We found that one p53-dependent SE,located on chromosome 9 and designated as KLF4-SE,regulated the expression of the Krüppel-like factor 4(KLF4)gene.Furthermore,the deletion of p53 significantly decreased the KLF4-SE enhancer activity and the KLF4 expression,but increased colony formation ability in the nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced cell transformation model.Subsequently,in TP53 KO cells,the overexpression of KLF4 partially reversed the increased clonogenic capacity caused by p53 deficiency.Consistently,KLF4 expression also decreased in lung cancer tissues and cell lines.It appeared that overexpression of KLF4 significantly suppressed the proliferation and migration of lung cancer cells.Collectively,our results suggest that the regulation of enhancer formation and activity by p53 is an integral component of the p53 tumor suppressor function.Therefore,our findings offer some novel insights into the regulation mechanism of p53 in lung oncogenesis and introduce a new strategy for screening therapeutic targets.展开更多
To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)stru...To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.展开更多
To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and ...To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and acoustic emission(AE)system are used to monitor the rockburst process.The effect of water on sandstone rockburst and the prevention mechanism of water on sandstone rockburst are analyzed from the perspective of energy and failure mode.The results show that the higher the ab-sorption degree,the lower the intensity of the rockburst after absorbing water on single side of sand-stone.This is reflected in the fact that with the increase in the water absorption level,the ejection velocity of rockburst fragments is smaller,the depth of the rockburst pit is shallower,and the AE energy is smaller.Under the water absorption level of 100%,the magnitude of rockburst intensity changes from medium to slight.The prevention mechanism of water on sandstone rockburst is that water reduces the capacity of sandstone to store strain energy and accelerates the expansion of shear cracks,which is not conducive to the occurrence of plate cracking before rockburst,and destroys the conditions for rockburst incubation.展开更多
Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency a...Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency and rapid recombination of photoexcited carriers, leading to poor photodetection performance. Here, inspired by the photogating effect, we demonstrated a highly sensitive photodetector based on graphene/WSe_(2) vertical heterostructure where the WSe_(2) layer acts as both the light absorption layer and the localized grating layer. The graphene conductive channel is induced to produce more carriers by capacitive coupling. Due to the strong light absorption and high external quantum efficiency of multilayer WSe_(2), as well as the high carrier mobility of graphene, a high photocurrent is generated in the vertical heterostructure. As a result, the photodetector exhibits ultra-high responsivity of 3.85×10~4A/W and external quantum efficiency of 1.3 × 10~7%.This finding demonstrates that photogating structures can effectively enhance the sensitivity of graphene-based photodetectors and may have great potential applications in future optoelectronic devices.展开更多
In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbo...In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbolic relationship,i.e.,the ORR current excluding the effect of other variables increases with proton concentration and then tends to a constant value.We consider that this is caused by the limitation of ORR kinetics by the trace oxygen concentration in the solution,which determines the upper limit of ORR kinetics.A model of effective concentration is further proposed for rectangular hyperbolic relationships:when the reactant concentration is high enough to reach a critical saturation concentration,the effective reactant concentration will become a constant value.This could be due to the limited concentration of a certain reactant for reactions involving more than one reactant or the limited number of active sites available on the catalyst.Our study provides new insights into the kinetics of electrocatalytic reactions,and it is important for the proper evaluation of catalyst activity and the study of structureperformance relationships.展开更多
BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations ...BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations between repeated high-normal ALT measurements and the risk of new-onset MAFLD prospectively.METHODS A cohort of 3553 participants followed for four consecutive health examinations over 4 years was selected.The incidence rate,cumulative times,and equally and unequally weighted cumulative effects of excess high-normal ALT levels(ehALT)were measured.Cox proportional hazards regression was used to analyse the association between the cumulative effects of ehALT and the risk of new-onset MAFLD.RESULTS A total of 83.13%of participants with MAFLD had normal ALT levels.The incidence rate of MAFLD showed a linear increasing trend in the cumulative ehALT group.Compared with those in the low-normal ALT group,the multivariate adjusted hazard ratios of the equally and unequally weighted cumulative effects of ehALT were 1.651[95%confidence interval(CI):1.199-2.273]and 1.535(95%CI:1.119-2.106)in the third quartile and 1.616(95%CI:1.162-2.246)and 1.580(95%CI:1.155-2.162)in the fourth quartile,respectively.CONCLUSION Most participants with MAFLD had normal ALT levels.Long-term high-normal ALT levels were associated with a cumulative increased risk of new-onset MAFLD.展开更多
Extracellular vesicles are released by all cell types and contain proteins,microRNAs,mRNAs,and other bioactive molecules.Extracellular vesicles play an important role in intercellular communication and in the modulati...Extracellular vesicles are released by all cell types and contain proteins,microRNAs,mRNAs,and other bioactive molecules.Extracellular vesicles play an important role in intercellular communication and in the modulation of the immune system and neuroinflammation.The cargo of extra cellular vesicles(e.g.,proteins and microRNAs)is altered in pathological situations.Extracellular vesicles contribute to the pathogenesis of many pathologies associated with sustained inflammation and neuroinflammation,including cance r,diabetes,hype rammonemia and hepatic encephalopathy,and other neurological and neurodegenerative diseases.Extracellular vesicles may cross the blood-brain barrier and transfer pathological signals from the periphery to the brain.This contributes to inducing neuroinflammation and cognitive and motor impairment in hyperammonemia and hepatic encephalopathy and in neurodegenerative diseases.The mechanisms involved are beginning to be unde rstood.For example,increased tumor necrosis factor a in extracellular vesicles from plasma of hype rammonemic rats induces neuroinflammation and motor impairment when injected into normal rats.Identifying the mechanisms by which extracellular vesicles contribute to the pathogenesis of these diseases will help to develop new treatments and diagnostic tools for their easy and early detection.In contrast,extra cellular vesicles from mesenchymal stem cells have therapeutic utility in many of the above pathologies,by reducing inflammation and neuroinflammation and improving cognitive and motor function.These extra cellular vesicles recapitulate the beneficial effects of mesenchymal stem cells and have advantages as therapeutic tools:they are less immunoge nic,may not diffe rentiate to malignant cells,cross the blood-brain barrier,and may reach more easily target organs.Extracellular vesicles from mesenchymal stem cells have beneficial effects in models of ischemic brain injury,Alzheimer's and Parkinson's diseases,hyperammonemia,and hepatic encephalopathy.Extracellular vesicles from mesenchymal stem cells modulate the immune system,promoting the shift from a pro-inflammato ry to an anti-inflammatory state.For example,extracellular vesicles from mesenchymal stem cells modulate the Th17/Treg balance,promoting the anti-inflammatory Treg.Extracellular vesicles from mesenchymal stem cells may also act directly in the brain to modulate microglia activation,promoting a shift from a pro-inflammatory to an anti-inflammatory state.This reduces neuroinflammation and improves cognitive and motor function.Two main components of extracellular vesicles from mesenchymal stem cells which contribute to these beneficial effects are transforming growth factor-βand miR-124.Identifying the mechanisms by which extracellular vesicles from mesenchymal stem cells induce the beneficial effects and the main molecules(e.g.,proteins and mRNAs)involved may help to improve their therapeutic utility.The aims of this review are to summarize the knowledge of the pathological effects of extracellular vesicles in different pathologies,the therapeutic potential of extra cellular vesicles from mesenchymal stem cells to recover cognitive and motor function and the molecular mechanisms for these beneficial effects on neurological function.展开更多
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende...Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.展开更多
To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of ef...To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of effective stress on permeability for carbonate fractured-vuggy rocks(CFVR).It shows that the permeability performance curves under different pore and confining pressures(i.e.altered stress conditions)for the fractured core models and the vuggy core models have similar change patterns.The ranges of permeability variation are significantly wider at high pore pressures,indicating that permeability reduction is the most significant during the early stage of development for fractured-vuggy reservoirs.Since each obtained effective stress coefficient for permeability(ESCP)varies with the changes in confining pressure and pore pressure,the effective stresses for permeability of four representative CFVR show obvious nonlinear characteristics,and the variation ranges of ESCP are all between 0 and 1.Meanwhile,a comprehensive ESCP mathematical model considering triple media,including matrix pores,fractures,and dissolved vugs,was proposed.It is proved theoretically that the ESCP of CFVR generally varies between 0 and 1.Additionally,the regression results showed that the power model ranked highest among the four empirical models mainly applied in stress sensitivity characterization,followed by the logarithmic model,exponential model,and binomial model.The concept of“permeability decline rate”was introduced to better evaluate the stress sensitivity performance for CFVR,in which the one-fracture rock is the strongest,followed by the fracture-vug rock and two-horizontalfracture rock;the through-hole rock is the weakest.In general,this study provides a theoretical basis to guide the design of development and adjustment programs for carbonate fractured-vuggy reservoirs.展开更多
A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri...A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.展开更多
Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research ob...Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern.展开更多
基金supported by the Science and Technology Department of Zhejiang Province, China (Grant Nos. 2022C02022 and 2023C02020)。
文摘Rice husk biochar inoculated with Bacillus megaterium(BM)(referred to as BM-inoculated biochar, BMB) and uninoculated rice husk biochar(RHB) were added to soil at two rates(0.5%, as BMB1 and RHB1, respectively, and 1.0%, as BMB2 and RHB2, respectively) in an incubation experiment to comprehensively evaluate their effects on basic soil properties, phosphorus(P) fractions, bacterial community composition, and P-cycling genes.
文摘Non-equilibrium solidification structures of Cu55Ni45 and Cu55Ni43Co2 alloys were prepared by the molten glass purification cycle superheating method.The variation of the recalescence phenomenon with the degree of undercooling in the rapid solidification process was investigated using an infrared thermometer.The addition of the Co element affected the evolution of the recalescence phenomenon in Cu-Ni alloys.The images of the solid-liquid interface migration during the rapid solidification of supercooled melts were captured by using a high-speed camera.The solidification rate of Cu-Ni alloys,with the addition of Co elements,was explored.Finally,the grain refinement structure with low supercooling was characterised using electron backscatter diffraction(EBSD).The effect of Co on the microstructural evolution during nonequilibrium solidification of Cu-Ni alloys under conditions of small supercooling is investigated by comparing the microstructures of Cu55Ni45 and Cu55Ni43Co2 alloys.The experimental results show that the addition of a small amount of Co weakens the recalescence behaviour of the Cu55Ni45 alloy and significantly reduces the thermal strain in the rapid solidification phase.In the rapid solidification phase,the thermal strain is greatly reduced,and there is a significant increase in the characteristic undercooling degree.Furthermore,the addition of Co and the reduction of Cu not only result in a lower solidification rate of the alloy,but also contribute to the homogenisation of the grain size.
基金This paper was funded by the Science and Technology Research Project of Chongqing Municipal Education Commission entitled“Research on Pricing of ETFs and Their Derivatives Driven by Multi-source Heterogeneous Data”(No.KJQN202300567).
文摘Green technological innovation is crucial for the manufacturing industry’s green transformation and sustainable development.This study examines the impact of executive overconfidence on corporate green innovation,focusing on the internal drivers of corporate innovation and using a sample of Shanghai and Shenzhen A-share listed manufacturing companies from 2013 to 2020.We further examine the mediating role of digital transformation and the moderating role of external attention.The findings indicate that executive overconfidence promotes corporate green technological innovation.Overconfident executives enhance green innovation by accelerating digital transformation.Moreover,external attention from analysts and media positively moderates the relationship between executive overconfidence and corporate green innovation.Heterogeneity analysis reveals that the positive impact of executive overconfidence on green innovation is more significant in non-state-owned enterprises,high-tech firms,and enterprises with lower pollution levels.
基金financially supported by the Key R&D program of Shanxi Province (International Cooperation) (No.201903D421036)the Natural Science Foundation of Shanxi Province (No.201901D111176)+5 种基金the Joint Funds of the National Natural Science Foundation of China (Grant No.U20A20230)the Bureau of Science,Technology and Industry for National Defense of China (No.WDZC2019JJ006)the National Natural Science Foundation of China (Grant No.52075501)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No.201802072)the National Defense Basic Scientific Research Program (No.JCKY2018408B003)the XX Supporting Scientific Research Project (No.xxxx-2019-021)。
文摘In this study, the precipitation transformation and age hardening of solution-treated Mg-9Gd-4Y-2Zn-0.5Zr(wt.%) alloy were investigated at different aging treatment parameters. The precipitation sequences of the alloy aged at 200℃, 250℃ and 300℃ are β’’(DO19) → β’(BCO) → β(FCC), β’’(DO19) → β’(BCO) → β_(1)(FCC) → β(FCC) and β(FCC), respectively. The streaks sequences of the alloy aged at 200℃, 250℃ and 300℃ are SF, SF → 14H-LPSO and SF → 14H-LPSO, respectively. For the alloy aged at 200℃ and 250℃, the increase in hardness with increasing aging time is contributed from the increase in precipitate volume fraction and the transformation from β’’ to β’ phase with basal → prismatic and spherical → spindle-like precipitate changes. The decrease in hardness after the peak-aging stage is attributed to the appearance of micro-sized β precipitates. Because of the smaller size of precipitates and the triangular arrangement of β’ precipitate, the hardness of the alloy aged at 200℃ is higher than that aged at 250℃. For the alloy aged at 300℃, the appearance of only micro-sized β precipitate and its coarsening with increasing aging time leads to the lowest hardness and an overall decrease in hardness with the aging time.
文摘Heat transfer in an Eyring-Powell fluid that conducts electricity and flows past an exponentially growing sheet is considered.As the sheet is stretched in the x direction,the flow develops in the region with y>0.The problem is tackled through a set of partial differential equations accounting for Magnetohydrodynamics(MHD),radiation and Joule heating effects,which are converted into a set of equivalent ordinary differential equations through a similarity transformation.The converted problem is solved in MATLAB in the framework a fourth order accurate integration scheme.It is found that the thermal relaxation period is inversely proportional to the thickness of the thermal boundary layer,whereas the Eckert-number displays the opposite trend.As this characteristic number grows,the temperature within the channel increases.
基金This work was supported by National Key R&D Program of China(2022YFB3605103)the National Natural Science Foundation of China(62204241,U22A2084,62121005,and 61827813)+3 种基金the Natural Science Foundation of Jilin Province(20230101345JC,20230101360JC,and 20230101107JC)the Youth Innovation Promotion Association of CAS(2023223)the Young Elite Scientist Sponsorship Program By CAST(YESS20200182)the CAS Talents Program(E30122E4M0).
文摘240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.
基金financially supported by the National Key Research and Development Program of China(2021YFD2100904)the National Natural Science Foundation of China(31871729,32172147)+2 种基金the Modern Agriculture key Project of Jiangsu Province of China(BE2022317)the Modern Agricultural Industrial Technology System Construction Project of Jiangsu Province of China(JATS[2021]522)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.
基金support from the “Joint International Laboratory on Environmental and Energy Frontier Materials”“Innovation Research Team of High-Level Local Universities in Shanghai”support from the National Natural Science Foundation of China (22209103)
文摘Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.
基金supported by the National Key Research and Development Projects,Nos.2022 YFC3602400,2022 YFC3602401(to JX)the Project Program of National Clinical Research Center for Geriatric Disorders(Xiangya Hospital),No.2020LNJJ16(to JX)the National Natural Science Foundation of China,No.82271369(to JX)。
文摘Hemorrhagic transformation is a major complication of large-artery atheroscle rotic stroke(a major ischemic stro ke subtype)that wo rsens outcomes and increases mortality.Disruption of the gut microbiota is an important feature of stroke,and some specific bacteria and bacterial metabolites may contribute to hemorrhagic transformation pathogenesis.We aimed to investigate the relationship between the gut microbiota and hemorrhagic transformation in largearte ry atheroscle rotic stro ke.An observational retrospective study was conducted.From May 2020 to September 2021,blood and fecal samples were obtained upon admission from 32 patients with first-ever acute ischemic stroke and not undergoing intravenous thrombolysis or endovascular thrombectomy,as well as 16 healthy controls.Patients with stro ke who developed hemorrhagic transfo rmation(n=15)were compared to those who did not develop hemorrhagic transformation(n=17)and with healthy controls.The gut microbiota was assessed through 16S ribosomal ribonucleic acid sequencing.We also examined key components of the lipopolysaccharide pathway:lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.We observed that bacterial diversity was decreased in both the hemorrhagic transformation and non-hemorrhagic transfo rmation group compared with the healthy controls.The patients with ischemic stro ke who developed hemorrhagic transfo rmation exhibited altered gut micro biota composition,in particular an increase in the relative abundance and dive rsity of members belonging to the Enterobacteriaceae family.Plasma lipopolysaccharide and lipopolysaccharide-binding protein levels were higher in the hemorrhagic transformation group compared with the non-hemorrhagic transfo rmation group.lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14 concentrations were associated with increased abundance of Enterobacte riaceae.Next,the role of the gut microbiota in hemorrhagic transformation was evaluated using an experimental stroke rat model.In this model,transplantation of the gut microbiota from hemorrhagic transformation rats into the recipient rats triggered higher plasma levels of lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.Ta ken togethe r,our findings demonstrate a noticeable change in the gut microbiota and lipopolysaccharide-related inflammatory response in stroke patients with hemorrhagic transformation.This suggests that maintaining a balanced gut microbiota may be an important factor in preventing hemorrhagic transfo rmation after stro ke.
基金the National Natural Science Foundation of China(Grant No.82072580).
文摘The abnormality of the p53 tumor suppressor is crucial in lung cancer development,because p53 regulates target gene promoters to combat cancer.Recent studies have shown extensive p53 binding to enhancer elements.However,whether p53 exerts a tumor suppressor role by shaping the enhancer landscape remains poorly understood.In the current study,we employed several functional genomics approaches to assess the enhancer activity at p53 binding sites throughout the genome based on our established TP53 knockout(KO)human bronchial epithelial cells(BEAS-2B).A total of 943 active regular enhancers and 370 super-enhancers(SEs)disappeared upon the deletion of p53,indicating that p53 modulates the activity of hundreds of enhancer elements.We found that one p53-dependent SE,located on chromosome 9 and designated as KLF4-SE,regulated the expression of the Krüppel-like factor 4(KLF4)gene.Furthermore,the deletion of p53 significantly decreased the KLF4-SE enhancer activity and the KLF4 expression,but increased colony formation ability in the nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced cell transformation model.Subsequently,in TP53 KO cells,the overexpression of KLF4 partially reversed the increased clonogenic capacity caused by p53 deficiency.Consistently,KLF4 expression also decreased in lung cancer tissues and cell lines.It appeared that overexpression of KLF4 significantly suppressed the proliferation and migration of lung cancer cells.Collectively,our results suggest that the regulation of enhancer formation and activity by p53 is an integral component of the p53 tumor suppressor function.Therefore,our findings offer some novel insights into the regulation mechanism of p53 in lung oncogenesis and introduce a new strategy for screening therapeutic targets.
基金financially funded by Natural Science Basic Research Program of Shaanxi(grant number 2022JM-239)Key Research and Development Project of Shaanxi Provincial(grant number 2021LLRH-05–08)。
文摘To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.
基金The financial support from the National Natural Science Foun-dation of China(Grant Nos.52074299 and 41941018)the Fundamental Research Funds for the Central Universities of China(Grant No.2023JCCXSB02)are gratefully acknowledged.
文摘To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and acoustic emission(AE)system are used to monitor the rockburst process.The effect of water on sandstone rockburst and the prevention mechanism of water on sandstone rockburst are analyzed from the perspective of energy and failure mode.The results show that the higher the ab-sorption degree,the lower the intensity of the rockburst after absorbing water on single side of sand-stone.This is reflected in the fact that with the increase in the water absorption level,the ejection velocity of rockburst fragments is smaller,the depth of the rockburst pit is shallower,and the AE energy is smaller.Under the water absorption level of 100%,the magnitude of rockburst intensity changes from medium to slight.The prevention mechanism of water on sandstone rockburst is that water reduces the capacity of sandstone to store strain energy and accelerates the expansion of shear cracks,which is not conducive to the occurrence of plate cracking before rockburst,and destroys the conditions for rockburst incubation.
基金Project supported by the National Natural Science Foundation of China (Grant No.11974379)the National Key Basic Research and Development Program of China (Grant No.2021YFC2203400)Jiangsu Vocational Education Integrated Circuit Technology “Double-Qualified” Famous Teacher Studio (Grant No.2022-13)。
文摘Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency and rapid recombination of photoexcited carriers, leading to poor photodetection performance. Here, inspired by the photogating effect, we demonstrated a highly sensitive photodetector based on graphene/WSe_(2) vertical heterostructure where the WSe_(2) layer acts as both the light absorption layer and the localized grating layer. The graphene conductive channel is induced to produce more carriers by capacitive coupling. Due to the strong light absorption and high external quantum efficiency of multilayer WSe_(2), as well as the high carrier mobility of graphene, a high photocurrent is generated in the vertical heterostructure. As a result, the photodetector exhibits ultra-high responsivity of 3.85×10~4A/W and external quantum efficiency of 1.3 × 10~7%.This finding demonstrates that photogating structures can effectively enhance the sensitivity of graphene-based photodetectors and may have great potential applications in future optoelectronic devices.
基金supported by the National Natural Science Foundation of China(21972131)。
文摘In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbolic relationship,i.e.,the ORR current excluding the effect of other variables increases with proton concentration and then tends to a constant value.We consider that this is caused by the limitation of ORR kinetics by the trace oxygen concentration in the solution,which determines the upper limit of ORR kinetics.A model of effective concentration is further proposed for rectangular hyperbolic relationships:when the reactant concentration is high enough to reach a critical saturation concentration,the effective reactant concentration will become a constant value.This could be due to the limited concentration of a certain reactant for reactions involving more than one reactant or the limited number of active sites available on the catalyst.Our study provides new insights into the kinetics of electrocatalytic reactions,and it is important for the proper evaluation of catalyst activity and the study of structureperformance relationships.
基金National Natural Science Foundation of China,No.72101236China Postdoctoral Science Foundation,No.2022M722900+1 种基金Collaborative Innovation Project of Zhengzhou City,No.XTCX2023006Nursing Team Project of the First Affiliated Hospital of Zhengzhou University,No.HLKY2023005.
文摘BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations between repeated high-normal ALT measurements and the risk of new-onset MAFLD prospectively.METHODS A cohort of 3553 participants followed for four consecutive health examinations over 4 years was selected.The incidence rate,cumulative times,and equally and unequally weighted cumulative effects of excess high-normal ALT levels(ehALT)were measured.Cox proportional hazards regression was used to analyse the association between the cumulative effects of ehALT and the risk of new-onset MAFLD.RESULTS A total of 83.13%of participants with MAFLD had normal ALT levels.The incidence rate of MAFLD showed a linear increasing trend in the cumulative ehALT group.Compared with those in the low-normal ALT group,the multivariate adjusted hazard ratios of the equally and unequally weighted cumulative effects of ehALT were 1.651[95%confidence interval(CI):1.199-2.273]and 1.535(95%CI:1.119-2.106)in the third quartile and 1.616(95%CI:1.162-2.246)and 1.580(95%CI:1.155-2.162)in the fourth quartile,respectively.CONCLUSION Most participants with MAFLD had normal ALT levels.Long-term high-normal ALT levels were associated with a cumulative increased risk of new-onset MAFLD.
基金supported in part by the Ministerio de Ciencia e Innovacion Spain(PID2020-113388RB-I00 to VF and PID2021-124359OB-100 to VMM)Conselleria Educacion Generalitat Valenciana(CIPROM/2021/082 to VF)co-funded with European Regional Development Funds(ERDF)to VF and VMM。
文摘Extracellular vesicles are released by all cell types and contain proteins,microRNAs,mRNAs,and other bioactive molecules.Extracellular vesicles play an important role in intercellular communication and in the modulation of the immune system and neuroinflammation.The cargo of extra cellular vesicles(e.g.,proteins and microRNAs)is altered in pathological situations.Extracellular vesicles contribute to the pathogenesis of many pathologies associated with sustained inflammation and neuroinflammation,including cance r,diabetes,hype rammonemia and hepatic encephalopathy,and other neurological and neurodegenerative diseases.Extracellular vesicles may cross the blood-brain barrier and transfer pathological signals from the periphery to the brain.This contributes to inducing neuroinflammation and cognitive and motor impairment in hyperammonemia and hepatic encephalopathy and in neurodegenerative diseases.The mechanisms involved are beginning to be unde rstood.For example,increased tumor necrosis factor a in extracellular vesicles from plasma of hype rammonemic rats induces neuroinflammation and motor impairment when injected into normal rats.Identifying the mechanisms by which extracellular vesicles contribute to the pathogenesis of these diseases will help to develop new treatments and diagnostic tools for their easy and early detection.In contrast,extra cellular vesicles from mesenchymal stem cells have therapeutic utility in many of the above pathologies,by reducing inflammation and neuroinflammation and improving cognitive and motor function.These extra cellular vesicles recapitulate the beneficial effects of mesenchymal stem cells and have advantages as therapeutic tools:they are less immunoge nic,may not diffe rentiate to malignant cells,cross the blood-brain barrier,and may reach more easily target organs.Extracellular vesicles from mesenchymal stem cells have beneficial effects in models of ischemic brain injury,Alzheimer's and Parkinson's diseases,hyperammonemia,and hepatic encephalopathy.Extracellular vesicles from mesenchymal stem cells modulate the immune system,promoting the shift from a pro-inflammato ry to an anti-inflammatory state.For example,extracellular vesicles from mesenchymal stem cells modulate the Th17/Treg balance,promoting the anti-inflammatory Treg.Extracellular vesicles from mesenchymal stem cells may also act directly in the brain to modulate microglia activation,promoting a shift from a pro-inflammatory to an anti-inflammatory state.This reduces neuroinflammation and improves cognitive and motor function.Two main components of extracellular vesicles from mesenchymal stem cells which contribute to these beneficial effects are transforming growth factor-βand miR-124.Identifying the mechanisms by which extracellular vesicles from mesenchymal stem cells induce the beneficial effects and the main molecules(e.g.,proteins and mRNAs)involved may help to improve their therapeutic utility.The aims of this review are to summarize the knowledge of the pathological effects of extracellular vesicles in different pathologies,the therapeutic potential of extra cellular vesicles from mesenchymal stem cells to recover cognitive and motor function and the molecular mechanisms for these beneficial effects on neurological function.
基金This research was financially supported by the Ministry of Trade,Industry,and Energy(MOTIE),Korea,under the“Project for Research and Development with Middle Markets Enterprises and DNA(Data,Network,AI)Universities”(AI-based Safety Assessment and Management System for Concrete Structures)(ReferenceNumber P0024559)supervised by theKorea Institute for Advancement of Technology(KIAT).
文摘Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.
基金This work was supported by the Joint Fund of NSFC for Enterprise Innovation and Development(Grant No.U19B6003-02-06)the National Natural Science Foundation of China(Grant No.51974331)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20200525)The authors would like to sincerely acknowledge these funding programs for their financial support.Particularly,the support provided by the China Scholarship Council(CSC)during a visit of Ke Sun(File No.202106440065)to the University of Alberta is also sincerely acknowledged.
文摘To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of effective stress on permeability for carbonate fractured-vuggy rocks(CFVR).It shows that the permeability performance curves under different pore and confining pressures(i.e.altered stress conditions)for the fractured core models and the vuggy core models have similar change patterns.The ranges of permeability variation are significantly wider at high pore pressures,indicating that permeability reduction is the most significant during the early stage of development for fractured-vuggy reservoirs.Since each obtained effective stress coefficient for permeability(ESCP)varies with the changes in confining pressure and pore pressure,the effective stresses for permeability of four representative CFVR show obvious nonlinear characteristics,and the variation ranges of ESCP are all between 0 and 1.Meanwhile,a comprehensive ESCP mathematical model considering triple media,including matrix pores,fractures,and dissolved vugs,was proposed.It is proved theoretically that the ESCP of CFVR generally varies between 0 and 1.Additionally,the regression results showed that the power model ranked highest among the four empirical models mainly applied in stress sensitivity characterization,followed by the logarithmic model,exponential model,and binomial model.The concept of“permeability decline rate”was introduced to better evaluate the stress sensitivity performance for CFVR,in which the one-fracture rock is the strongest,followed by the fracture-vug rock and two-horizontalfracture rock;the through-hole rock is the weakest.In general,this study provides a theoretical basis to guide the design of development and adjustment programs for carbonate fractured-vuggy reservoirs.
基金supported by the National Key Research and Development Program of China(2021YFB3501002)State Key Program of National Natural Science Foundation of China(5203405)+3 种基金National Natural Science Foundation of China(51974220,52104383)National Key Research and Development Program of China(2021YFB3700902)Key Research and Development Program of Shaanxi Province(2020ZDLGY13-06,2017ZDXM-GY-037)Shaanxi Province National Science Fund for Distinguished Young Scholars(2022JC-24)。
文摘A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.
基金Under the auspices of National Natural Science Foundation of China(No.42171230)。
文摘Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern.