Effect of austempering on the transformation induced plasticity (TRIP) of hot rolled multiphase steel was investigated. Polygonal ferrite, granular bainite, and a large amount of stabilized retained austenite could ...Effect of austempering on the transformation induced plasticity (TRIP) of hot rolled multiphase steel was investigated. Polygonal ferrite, granular bainite, and a large amount of stabilized retained austenite could be obtained in the hot rolled multiphase steel. Strain induced martensite transformation (SIMT) of retained austenite and TRIP effectively occur under straining owing to austempering after hot rolling, and mechanical properties of the present steel remain at a relatively high constant value for austempering at 400℃. The mechanical properties of the steel exhibited a good combination of tensile strength (791MPa) and total elongation (36%) because the stability of retained austenite is optimal when the steel is held for 20min.展开更多
The Luders deformation behavior in a medium Mn transformation induced plasticity (TRIP) steel is investigated at different temperatures ranging from 25 to 300 ℃. It demonstrates that the Ltiders band appears at all...The Luders deformation behavior in a medium Mn transformation induced plasticity (TRIP) steel is investigated at different temperatures ranging from 25 to 300 ℃. It demonstrates that the Ltiders band appears at all testing temperatures but with varied Luders strains which do not change monoton ically with temperature. The martensitic transformation is simultaneously observed within the Ltiders band in varying degrees depending on the testing temperature. It is well verified that the martensitic transformation is not responsible for the formation of Luders band, and a reasonable explanation is given for the non-monotonic variation of Luders strain with increasing temperature.展开更多
Larger amount of austenite could be retained in an intercritically heat-treated bainite- transformed steel. The elongation and the strength-ductility balance of the steel could be enhanced considerably due to strain-i...Larger amount of austenite could be retained in an intercritically heat-treated bainite- transformed steel. The elongation and the strength-ductility balance of the steel could be enhanced considerably due to strain-induced martensite transformation and transformation- induced plasticity (TRIP) of retained austenite. The effects of test temperature and strain rate on the mechanical properties and strain induced transformation behavior of retained austenite in the steel were investigated. Total elongation and strength-ductility balance of the specimen reached maximum when it strained at a strain rate of 2.8×10-4s-1 and at 350℃. The relation between test temperature and tensile properties showed the same tendency at three kinds of strain rates. Flow stress increased considerably with decreasing the strain rate.展开更多
A new type of high strength steel containing a significant amount of stable retained austenite was obtained by austempering immediately after intercritical annealing.This sort of low carbon steel only contains alloyin...A new type of high strength steel containing a significant amount of stable retained austenite was obtained by austempering immediately after intercritical annealing.This sort of low carbon steel only contains alloying elements of silicon and manganese rather than nickel and chromium.Its mechanical properties were enhanced considerably due to strain-induced martensite transformation and transformation-induced plasticity(TRIP)of retained austenite when it was strained at temperatures between Msand Md,because retained austenite was moderately stabilized due to carbon enrichment by austempering.Austempering was carried out at different temperatures and 400 ℃ was found to be optimal.Tensile strength,total elongation and strength-ductility balance reached the maximum values and the product of tensile strength and total elongation exceeded 30 135 MPa % when the TRIP steel was held at 400 ℃ and strained at 350 ℃.展开更多
A great deal of stabilized retained austenite can be obtained by means of austempering immediately after intercritical annealing in the low-carbon plain steel sheets which only contain alloying elements of silicon and...A great deal of stabilized retained austenite can be obtained by means of austempering immediately after intercritical annealing in the low-carbon plain steel sheets which only contain alloying elements of silicon and manganese. Transformation from retained austenite to martensite may be induced by strain at a temperature ranging from 50 ℃ to 400 ℃ during tension testing. Transformation-induced plasticity (TRIP) may occur. Alloying of silicon improves the stability of retained austenite. Mechanical properties of the present TRIP steels containing manganese increase with increasing silicon amount when the amount of silicon is less than two percent.展开更多
基金supported by the National Natural Science Foundation of China(No.50334010)the Doctor Degree Thesis Subsidization Item of Northeastern University(No.200302).
文摘Effect of austempering on the transformation induced plasticity (TRIP) of hot rolled multiphase steel was investigated. Polygonal ferrite, granular bainite, and a large amount of stabilized retained austenite could be obtained in the hot rolled multiphase steel. Strain induced martensite transformation (SIMT) of retained austenite and TRIP effectively occur under straining owing to austempering after hot rolling, and mechanical properties of the present steel remain at a relatively high constant value for austempering at 400℃. The mechanical properties of the steel exhibited a good combination of tensile strength (791MPa) and total elongation (36%) because the stability of retained austenite is optimal when the steel is held for 20min.
基金support from the Steel Joint Funds of the National Natural Science Foundation of China(Grant No.U1560204)Research Grants Council of Hong Kong(Grant Nos.HKU719712E,HKU712713E)Small Project Funding of HKU(Grant No.201409176053)
文摘The Luders deformation behavior in a medium Mn transformation induced plasticity (TRIP) steel is investigated at different temperatures ranging from 25 to 300 ℃. It demonstrates that the Ltiders band appears at all testing temperatures but with varied Luders strains which do not change monoton ically with temperature. The martensitic transformation is simultaneously observed within the Ltiders band in varying degrees depending on the testing temperature. It is well verified that the martensitic transformation is not responsible for the formation of Luders band, and a reasonable explanation is given for the non-monotonic variation of Luders strain with increasing temperature.
基金the National Natural Science Foundation of China(No.50334010)the Doctor Degree Thesis Subsidization Item of Northeastern Universiry(No.200302).
文摘Larger amount of austenite could be retained in an intercritically heat-treated bainite- transformed steel. The elongation and the strength-ductility balance of the steel could be enhanced considerably due to strain-induced martensite transformation and transformation- induced plasticity (TRIP) of retained austenite. The effects of test temperature and strain rate on the mechanical properties and strain induced transformation behavior of retained austenite in the steel were investigated. Total elongation and strength-ductility balance of the specimen reached maximum when it strained at a strain rate of 2.8×10-4s-1 and at 350℃. The relation between test temperature and tensile properties showed the same tendency at three kinds of strain rates. Flow stress increased considerably with decreasing the strain rate.
基金Sponsored by National Natural Science Foundation of China(50334010)
文摘A new type of high strength steel containing a significant amount of stable retained austenite was obtained by austempering immediately after intercritical annealing.This sort of low carbon steel only contains alloying elements of silicon and manganese rather than nickel and chromium.Its mechanical properties were enhanced considerably due to strain-induced martensite transformation and transformation-induced plasticity(TRIP)of retained austenite when it was strained at temperatures between Msand Md,because retained austenite was moderately stabilized due to carbon enrichment by austempering.Austempering was carried out at different temperatures and 400 ℃ was found to be optimal.Tensile strength,total elongation and strength-ductility balance reached the maximum values and the product of tensile strength and total elongation exceeded 30 135 MPa % when the TRIP steel was held at 400 ℃ and strained at 350 ℃.
文摘A great deal of stabilized retained austenite can be obtained by means of austempering immediately after intercritical annealing in the low-carbon plain steel sheets which only contain alloying elements of silicon and manganese. Transformation from retained austenite to martensite may be induced by strain at a temperature ranging from 50 ℃ to 400 ℃ during tension testing. Transformation-induced plasticity (TRIP) may occur. Alloying of silicon improves the stability of retained austenite. Mechanical properties of the present TRIP steels containing manganese increase with increasing silicon amount when the amount of silicon is less than two percent.