In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most pr...In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most promising new approaches for extracting noise hidden information from noisy time series . Because of singularity strength is hard to calculate accurately, a wavelet transform modulus maxima method was used to get singularity spectrum. The singularity spectrum of white noise and aluminium interconnection electromigration noise was calculated and analyzed. The experimental results show that the new algorithm is more accurate than tradition estimating algorithm. The proposed method is feasible and efficient.展开更多
A new robust watermarking approach was proposed in 2D continuous wavelet domain (CWT). The watermark is embedded into the large coefficients in the middle band of wavelet transform modulus maxima (WTMM) of the hos...A new robust watermarking approach was proposed in 2D continuous wavelet domain (CWT). The watermark is embedded into the large coefficients in the middle band of wavelet transform modulus maxima (WTMM) of the host image. After possible attacks, the watermark is then detected and extracted by correlation analysis. Compared with other wavelet domain watermarking approaches, the WTMM approach can endow the image with beth rotation and shift invariant properties. On the other hand, scale invariance is achieved with the geometric normalization during watermark detection. Case studies involve various attacks such as shifting, lossy compression, scaling, rotation and median filtering on the watermarked image, and the result shows that the approach is robust to these attacks.展开更多
In applications such as image retrieval and recognition, precise edge detection for interested regions plays a decisive role. Existing methods generally take little care about local characteristics, or become time con...In applications such as image retrieval and recognition, precise edge detection for interested regions plays a decisive role. Existing methods generally take little care about local characteristics, or become time consuming if every detail is considered. In the paper, a new method is put forward based on the combination of effective image representation and multiscale wavelet analysis. A new object tree image representation is introduced. Then a series of object trees are constructed based on wavelet transform modulus maxima at different scales in descending order. Computation is only needed for interested regions. Implementation steps are also given with an illustrative example.展开更多
Chaos game representation (CGR) is proposed as a scale-independent representation for DNA sequences and provides information about the statistical distribution of oligonucleotides in a DNA sequence. CGR images of DN...Chaos game representation (CGR) is proposed as a scale-independent representation for DNA sequences and provides information about the statistical distribution of oligonucleotides in a DNA sequence. CGR images of DNA sequences represent some kinds of fractal patterns, but the common multifractal analysis based on the box counting method cannot deal with CGR images perfectly. Here, the wavelet transform modulus maxima (WTMM) method is applied to the multifractal analysis of CGR images. The results show that the scale-invariance range of CGR edge images can be extended to three orders of magnitude, and complete singularity spectra can be calculated. Spectrum parameters such as the singularity spectrum span are extracted to describe the statistical character of DNA sequences. Compared with the singularity spectrum span, exon sequences with a minimal spectrum span have the most uniform fractal structure. Also, the singularity spectrum parameters are related to oligonueleotide length, sequence component and species, thereby providing a method of studying the length polymorphism of repeat oligonucleotides.展开更多
Image enhancement technology plays a very important role to improve image quality in image processing. By enhancing some information and restraining other information selectively, it can improve image visual effect. T...Image enhancement technology plays a very important role to improve image quality in image processing. By enhancing some information and restraining other information selectively, it can improve image visual effect. The objective of this work is to implement the image enhancement to gray scale images using different techniques. After the fundamental methods of image enhancement processing are demonstrated, image enhancement algorithms based on space and frequency domains are systematically investigated and compared. The advantage and defect of the above-mentioned algorithms are analyzed. The algorithms of wavelet based image enhancement are also deduced and generalized. Wavelet transform modulus maxima(WTMM) is a method for detecting the fractal dimension of a signal, it is well used for image enhancement. The image techniques are compared by using the mean(μ),standard deviation(?), mean square error(MSE) and PSNR(peak signal to noise ratio). A group of experimental results demonstrate that the image enhancement algorithm based on wavelet transform is effective for image de-noising and enhancement. Wavelet transform modulus maxima method is one of the best methods for image enhancement.展开更多
The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has b...The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has been found that the locations of singularities after wavelet transform are only affected by two factors, their original locations and the seismic wavelet length, which says it does not matter with what shape the wavelet will be. The wavelet length can be determined according to the wavelet transform results and be eliminated thereafter so that we are able to detect thin bed seismic signal with resolution of l/32 wavelength. The singularities have been recovered with improved resolution of the seismic section by real data processing.展开更多
We proposed and demonstrated a wavelet transform modulus maxima (WTMM) de-noising method to decrease the temperature error. In this scheme, the composition scale was determined simply by the WTMM amplitude variation...We proposed and demonstrated a wavelet transform modulus maxima (WTMM) de-noising method to decrease the temperature error. In this scheme, the composition scale was determined simply by the WTMM amplitude variation with the growth of the decomposition scale at 30 ℃, and the signal WTMM was obtained by the wavelet decomposition modulus on every decomposition scale based on the modulus propagating difference between the signal and noise. Then, we reconstructed the signal using the signal WTMM. Experimental results show that the proposed method is effective for de-noising, allowing for a temperature error decrease of about 1 ℃ at 40 ℃ and 50℃ comparing to the original data.展开更多
In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally...In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 kin to 11.5 km and the temperature accuracy increases to 1.58 ℃ at the sensing distance of 10.4kin.展开更多
The Floating nuclear power plant grid is composed of power generation,in-station power supply and external power delivery.To ensure the safety of the nuclear island,the in-station system adopts a special power supply ...The Floating nuclear power plant grid is composed of power generation,in-station power supply and external power delivery.To ensure the safety of the nuclear island,the in-station system adopts a special power supply mode,while the external power supply needs to be adapted to different types of external systems.Because of frequent single phase-ground faults and various fault forms,the fault line selection protection should be accurate,sensitive and adaptive.This paper presents a fault line selection method in cooperation with multi-mode grounding control.Based on the maximum united energy entropy ratio(MUEER),the optimal wavelet basis function and decomposition scale are adaptively chosen,while the fault line is selected by wavelet transform modulus maxima(WTMM).For high-impedance faults(HIFs),to enlarge the fault feature,the system grounding mode can be switched by the multi-mode grounding control.Based on the characteristic of HIFs,the fault line can be selected by comparing phase differences of zero-sequence current mutation and fault phase voltage mutation before and after the fault.Simulation results using MATLAB/Simulink show the effectiveness of the proposed method in solving the protection problems.展开更多
基金Foundation item: National Natural Science Foundation of China(No.60372072)
文摘In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most promising new approaches for extracting noise hidden information from noisy time series . Because of singularity strength is hard to calculate accurately, a wavelet transform modulus maxima method was used to get singularity spectrum. The singularity spectrum of white noise and aluminium interconnection electromigration noise was calculated and analyzed. The experimental results show that the new algorithm is more accurate than tradition estimating algorithm. The proposed method is feasible and efficient.
基金The National Natural Science Foundation of China (No.60703048)the Natural Science Foundation of Hubei Province (No.2007ABA303)
文摘A new robust watermarking approach was proposed in 2D continuous wavelet domain (CWT). The watermark is embedded into the large coefficients in the middle band of wavelet transform modulus maxima (WTMM) of the host image. After possible attacks, the watermark is then detected and extracted by correlation analysis. Compared with other wavelet domain watermarking approaches, the WTMM approach can endow the image with beth rotation and shift invariant properties. On the other hand, scale invariance is achieved with the geometric normalization during watermark detection. Case studies involve various attacks such as shifting, lossy compression, scaling, rotation and median filtering on the watermarked image, and the result shows that the approach is robust to these attacks.
文摘In applications such as image retrieval and recognition, precise edge detection for interested regions plays a decisive role. Existing methods generally take little care about local characteristics, or become time consuming if every detail is considered. In the paper, a new method is put forward based on the combination of effective image representation and multiscale wavelet analysis. A new object tree image representation is introduced. Then a series of object trees are constructed based on wavelet transform modulus maxima at different scales in descending order. Computation is only needed for interested regions. Implementation steps are also given with an illustrative example.
基金Project supported by the Science and Technology Commission of Shanghai Municipality (Grant No. 05DZ19747)the National Basic Research Program of China (Grant No. 2006CB504509)
文摘Chaos game representation (CGR) is proposed as a scale-independent representation for DNA sequences and provides information about the statistical distribution of oligonucleotides in a DNA sequence. CGR images of DNA sequences represent some kinds of fractal patterns, but the common multifractal analysis based on the box counting method cannot deal with CGR images perfectly. Here, the wavelet transform modulus maxima (WTMM) method is applied to the multifractal analysis of CGR images. The results show that the scale-invariance range of CGR edge images can be extended to three orders of magnitude, and complete singularity spectra can be calculated. Spectrum parameters such as the singularity spectrum span are extracted to describe the statistical character of DNA sequences. Compared with the singularity spectrum span, exon sequences with a minimal spectrum span have the most uniform fractal structure. Also, the singularity spectrum parameters are related to oligonueleotide length, sequence component and species, thereby providing a method of studying the length polymorphism of repeat oligonucleotides.
基金Projects(61376076,61274026,61377024)supported by the National Natural Science Foundation of ChinaProjects(12C0108,13C321)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2013FJ2011,2014FJ2017,2013FJ4232)supported by the Science and Technology Plan Foundation of Hunan Province,China
文摘Image enhancement technology plays a very important role to improve image quality in image processing. By enhancing some information and restraining other information selectively, it can improve image visual effect. The objective of this work is to implement the image enhancement to gray scale images using different techniques. After the fundamental methods of image enhancement processing are demonstrated, image enhancement algorithms based on space and frequency domains are systematically investigated and compared. The advantage and defect of the above-mentioned algorithms are analyzed. The algorithms of wavelet based image enhancement are also deduced and generalized. Wavelet transform modulus maxima(WTMM) is a method for detecting the fractal dimension of a signal, it is well used for image enhancement. The image techniques are compared by using the mean(μ),standard deviation(?), mean square error(MSE) and PSNR(peak signal to noise ratio). A group of experimental results demonstrate that the image enhancement algorithm based on wavelet transform is effective for image de-noising and enhancement. Wavelet transform modulus maxima method is one of the best methods for image enhancement.
文摘The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has been found that the locations of singularities after wavelet transform are only affected by two factors, their original locations and the seismic wavelet length, which says it does not matter with what shape the wavelet will be. The wavelet length can be determined according to the wavelet transform results and be eliminated thereafter so that we are able to detect thin bed seismic signal with resolution of l/32 wavelength. The singularities have been recovered with improved resolution of the seismic section by real data processing.
基金This work was supported by the Natural Science Foundation of China (60977058 & 61307101), Independent Innovation Foundation of Shandong University (IIFSDU2012JC015) and the key technology projects of Shandong Province (2010GGX10137).
文摘We proposed and demonstrated a wavelet transform modulus maxima (WTMM) de-noising method to decrease the temperature error. In this scheme, the composition scale was determined simply by the WTMM amplitude variation with the growth of the decomposition scale at 30 ℃, and the signal WTMM was obtained by the wavelet decomposition modulus on every decomposition scale based on the modulus propagating difference between the signal and noise. Then, we reconstructed the signal using the signal WTMM. Experimental results show that the proposed method is effective for de-noising, allowing for a temperature error decrease of about 1 ℃ at 40 ℃ and 50℃ comparing to the original data.
基金This work is supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 61377089 and 61527819, by Shanxi Province Natural Science Foundation under Grant No. 2015011049, by Research Project by Shanxi Province Youth Science and Technology Foundation under Grant No. 201601D021069, and by Research Project Supported by Shanxi Scholarship Council of China under Grant No. 2016-036 Key Science and Technology Research Project based on Coal of Shanxi Province (MQ2014-09), by program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, by Program for Sanjin Scholar.
文摘In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 kin to 11.5 km and the temperature accuracy increases to 1.58 ℃ at the sensing distance of 10.4kin.
基金Project Supported by National Natural Science Foundation of China(No.51877089).Research on the mechanism and fault ride-through integrated strategies of an active power router in hybrid AC and DC distribution grids.
文摘The Floating nuclear power plant grid is composed of power generation,in-station power supply and external power delivery.To ensure the safety of the nuclear island,the in-station system adopts a special power supply mode,while the external power supply needs to be adapted to different types of external systems.Because of frequent single phase-ground faults and various fault forms,the fault line selection protection should be accurate,sensitive and adaptive.This paper presents a fault line selection method in cooperation with multi-mode grounding control.Based on the maximum united energy entropy ratio(MUEER),the optimal wavelet basis function and decomposition scale are adaptively chosen,while the fault line is selected by wavelet transform modulus maxima(WTMM).For high-impedance faults(HIFs),to enlarge the fault feature,the system grounding mode can be switched by the multi-mode grounding control.Based on the characteristic of HIFs,the fault line can be selected by comparing phase differences of zero-sequence current mutation and fault phase voltage mutation before and after the fault.Simulation results using MATLAB/Simulink show the effectiveness of the proposed method in solving the protection problems.