期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cyclostationary Feature Detection Based Spectrum Sensing Algorithm under Complicated Electromagnetic Environment in Cognitive Radio Networks 被引量:19
1
作者 Yang Mingchuan Li Yuan +1 位作者 Liu Xiaofeng Tang Wenyan 《China Communications》 SCIE CSCD 2015年第9期35-44,共10页
This paper focuses on improving the detection performance of spectrum sensing in cognitive radio(CR) networks under complicated electromagnetic environment. Some existing fast spectrum sensing algorithms cannot get sp... This paper focuses on improving the detection performance of spectrum sensing in cognitive radio(CR) networks under complicated electromagnetic environment. Some existing fast spectrum sensing algorithms cannot get specific features of the licensed users'(LUs') signal, thus they cannot be applied in this situation without knowing the power of noise. On the other hand some algorithms that yield specific features are too complicated. In this paper, an algorithm based on the cyclostationary feature detection and theory of Hilbert transformation is proposed. Comparing with the conventional cyclostationary feature detection algorithm, this approach is more flexible i.e. it can flexibly change the computational complexity according to current electromagnetic environment by changing its sampling times and the step size of cyclic frequency. Results of simulation indicate that this approach can flexibly detect the feature of received signal and provide satisfactory detection performance compared to existing approaches in low Signal-to-noise Ratio(SNR) situations. 展开更多
关键词 cognitive radio cyclostationary feature detection Hilbert transformation
下载PDF
Fuzzy Methodology for Taxonomy and Knowledge Base Design
2
作者 Paul P. Wang & Fuji Lai(Fuzzy Logic Research Laboratory, Department of Electrical Engineering Duke University, Box 90291, Durham, North Carolina 27708-0291)email: { ppw@ee.duke.edu & flai @acpub.duke.edu } . 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第2期1-23,共23页
This paper summarizes the research results dealing with washer and nut taxonomy and knowledge base design, making the use of fuzzy methodology. In particular, the theory of fuzzy membership functions, similarity matri... This paper summarizes the research results dealing with washer and nut taxonomy and knowledge base design, making the use of fuzzy methodology. In particular, the theory of fuzzy membership functions, similarity matrices, and the operation of fuzzy inference play important roles.A realistic set of 25 washers and nuts are employed to conduct extensive experiments and simulations.The investigation includes a complete demonstration of engineering design. The results obtained from this feasibility study are very encouraging indeed because they represent the lower bound with respect to performance, namely correctrecognition rate, of what fuzzy methodology can do. This lower bound shows high recognition rate even with noisy input patterns, robustness in terms of noise tolerance, and simplicity in hardware implementation. Possible future works are suggested in the conclusion. 展开更多
关键词 Feature extraction Pattern recognition Fuzzy set theory TAXONOMY Fuzzy similarity matrix Industrial washer and nut classification Knowledge base design Database transformation Cognitive science Industrial part identification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部