期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Waveform feature monitoring scheme for transformer differential protection
1
作者 Bahador FANI Mohamad Esmail HAMEDANI GOLSHAN Hosein ASKARIAN ABYANEH 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第2期116-123,共8页
We propose a new scheme for transformer differential protection. This scheme uses different characteristics of the differential currents waveforms (DCWs) under internal fault and magnetizing inrush current conditions.... We propose a new scheme for transformer differential protection. This scheme uses different characteristics of the differential currents waveforms (DCWs) under internal fault and magnetizing inrush current conditions. The scheme is based on choosing an appropriate feature of the waveform and monitoring it during the post-disturbance instants. For this purpose, the signal feature is quantified by a discrimination function (DF). Discrimination between internal faults and magnetizing inrush currents is carried out by tracking the signs of three decision-making functions (DMFs) computed from the DFs for three phases. We also present a new algorithm related to the general scheme. The algorithm is based on monitoring the second derivative sign of DCW. The results show that all types of internal faults, even those accompanied by the magnetizing inrush, can be correctly identified from the inrush conditions about half a cycle after the occurrence of a disturbance. Another advantage of the proposed method is that the fault detection algorithm does not depend on the selection of thresholds. Furthermore, the proposed algorithm does not require burdensome computations. 展开更多
关键词 transformer differential protection differential current waveform Inrush current Fault current Waveform feature Waveform processing
原文传递
Differential transformation method for studying flow and heat transfer due to stretching sheet embedded in porous medium with variable thickness, variable thermal conductivity,and thermal radiation 被引量:5
2
作者 M.M.KHADER A.M.MEGAHED 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第11期1387-1400,共14页
This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence ... This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence of thermal radiation. The flow is caused by non-linear stretching of a sheet. Thermal conductivity of the fluid is assumed to vary linearly with temperature. The governing partial differential equations (PDEs) are transformed into a system of coupled non-linear ordinary differential equations (ODEs) with appropriate boundary conditions for various physical parameters. The remaining system of ODEs is solved numerically using a differential transformation method (DTM). The effects of the porous parameter, the wall thickness parameter, the radiation parameter, the thermal conductivity parameter, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction and the Nusselt numbers are presented. Comparison of the obtained numerical results is made with previously published results in some special cases, with good agreement. The results obtained in this paper confirm the idea that DTM is a powerful mathematical tool and can be applied to a large class of linear and non-linear problems in different fields of science and engineering. 展开更多
关键词 Newtonian fluid stretching sheet differential transformation method(DTM) thermal radiation variable thermal conductivity variable thickness
下载PDF
Reduced Differential Transform Method for Solving Nonlinear Biomathematics Models 被引量:4
3
作者 K.A.Gepreel A.M.S.Mahdy +1 位作者 M.S.Mohamed A.Al-Amiri 《Computers, Materials & Continua》 SCIE EI 2019年第9期979-994,共16页
In this paper,we study the approximate solutions for some of nonlinear Biomathematics models via the e-epidemic SI1I2R model characterizing the spread of viruses in a computer network and SIR childhood disease model.T... In this paper,we study the approximate solutions for some of nonlinear Biomathematics models via the e-epidemic SI1I2R model characterizing the spread of viruses in a computer network and SIR childhood disease model.The reduced differential transforms method(RDTM)is one of the interesting methods for finding the approximate solutions for nonlinear problems.We apply the RDTM to discuss the analytic approximate solutions to the SI1I2R model for the spread of virus HCV-subtype and SIR childhood disease model.We discuss the numerical results at some special values of parameters in the approximate solutions.We use the computer software package such as Mathematical to find more iteration when calculating the approximate solutions.Graphical results and discussed quantitatively are presented to illustrate behavior of the obtained approximate solutions. 展开更多
关键词 Reduced differential transforms method nonlinear biomathematics models SI1I2R model SIR model analytic approximate solutions qualitative analysis stability and equilibrium.
下载PDF
New approximate solution for time-fractional coupled KdV equations by generalised differential transform method 被引量:1
4
作者 刘金存 侯国林 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期41-47,共7页
In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The pr... In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial. An illustrative example shows that the genera]ised two-dimensional DTM is effective for the coupled equations. 展开更多
关键词 fractional coupled KdV equations Caputo fractional derivative differential transform method approximate analytic solution
下载PDF
On Nonlinear Conformable Fractional Order Dynamical System via Differential Transform Method 被引量:1
5
作者 Kamal Shah Thabet Abdeljawad +1 位作者 Fahd Jarad Qasem Al-Mdallal 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1457-1472,共16页
This article studies a nonlinear fractional order Lotka-Volterra prey-predator type dynamical system.For the proposed study,we consider the model under the conformable fractional order derivative(CFOD).We investigate ... This article studies a nonlinear fractional order Lotka-Volterra prey-predator type dynamical system.For the proposed study,we consider the model under the conformable fractional order derivative(CFOD).We investigate the mentioned dynamical system for the existence and uniqueness of at least one solution.Indeed,Schauder and Banach fixed point theorems are utilized to prove our claim.Further,an algorithm for the approximate analytical solution to the proposed problem has been established.In this regard,the conformable fractional differential transform(CFDT)technique is used to compute the required results in the form of a series.Using Matlab-16,we simulate the series solution to illustrate our results graphically.Finally,a comparison of our solution to that obtained for the Caputo fractional order derivative via the perturbation method is given. 展开更多
关键词 Prey predator model existence results conformable fractional differential transform
下载PDF
Reduced Differential Transform Method for Solving Linear and Nonlinear Goursat Problem 被引量:1
6
作者 Sharaf Mohmoud Mohamed Gubara 《Applied Mathematics》 2016年第10期1049-1056,共8页
In this paper a new method for solving Goursat problem is introduced using Reduced Differential Transform Method (RDTM). The approximate analytical solution of the problem is calculated in the form of series with easi... In this paper a new method for solving Goursat problem is introduced using Reduced Differential Transform Method (RDTM). The approximate analytical solution of the problem is calculated in the form of series with easily computable components. The comparison of the methodology presented in this paper with some other well known techniques demonstrates the effectiveness and power of the newly proposed methodology. 展开更多
关键词 Reduced differential Transform Method Goursat Problem Adomian Decomposition Method (ADM) Variational Iteration Method (VIM)
下载PDF
Differential transform method for solving Richards' equation
7
作者 Xi CHEN Ying DAI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第2期169-180,共12页
An approximate solution to Richards' equation is presented, mathematically describing a sort of unsaturated single phase fluid flow in porous media. The approach is a differential transform method (DTM) with interm... An approximate solution to Richards' equation is presented, mathematically describing a sort of unsaturated single phase fluid flow in porous media. The approach is a differential transform method (DTM) with intermediate variables. Two examples are given to demonstrate the accuracy of the presented solution. 展开更多
关键词 approximate analytical solution Richavds' equation differential transform method (DTM) intermediate variable
下载PDF
Solving shock wave with discontinuity by enhanced differential transform method(EDTM)
8
作者 邹丽 王振 +2 位作者 宗智 邹东阳 张朔 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第12期1569-1582,共14页
An enhanced differential transform method (EDTM), which introduces the Pad@ technique into the standard differential transform method (DTM), is proposed. The enhanced method is applied to the analytic treatment of... An enhanced differential transform method (EDTM), which introduces the Pad@ technique into the standard differential transform method (DTM), is proposed. The enhanced method is applied to the analytic treatment of the shock wave. It accelerates the convergence of the series solution and provides an exact Dower series solution. 展开更多
关键词 enhanced differential transform method (EDTM) shock wave Pad@ tech-nique Burgers equation
下载PDF
AN APPLICATION OF UNGAR’S DIFFERENTIAL TRANSFORM TO ELASTODYNAMICS
9
作者 胡德绥 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第7期675-678,共4页
In recent years, a lot of writers have used Cagniard-de Hoop's method[1][] to solve some problems of elastic wave. But it is a difficult and complicated task to change the path of integration when we use this meth... In recent years, a lot of writers have used Cagniard-de Hoop's method[1][] to solve some problems of elastic wave. But it is a difficult and complicated task to change the path of integration when we use this method. A differential transform by A.Ungar[3,6] can obviate this difficulty. In this paper, weuse Ungar 's differential transform to solve a case of Lamb's problem [1][2] 展开更多
关键词 exp S differential TRANSFORM TO ELASTODYNAMICS AN APPLICATION OF UNGAR
下载PDF
The Riccati Equation, Differential Transform, Rational Solutions and Applications
10
作者 Malick Ndiaye 《Applied Mathematics》 2022年第9期774-792,共19页
In this article, the Riccati Equation is considered. Various techniques of finding analytical solutions are explored. Those techniques consist mainly of making a change of variable or the use of Differential Transform... In this article, the Riccati Equation is considered. Various techniques of finding analytical solutions are explored. Those techniques consist mainly of making a change of variable or the use of Differential Transform. It is shown that the nonconstant rational functions whose numerator and denominator are of degree 1, cannot be solutions to the Riccati equation. Two applications of the Riccati equation are discussed. The first one deals with Quantum Mechanics and the second one deal with Physics. 展开更多
关键词 Riccati Equation differential Transform Rational Solutions
下载PDF
INTEGRABLE TYPES OF NONLINEAR ORDINARY DIFFERENTIAL EQUATION SETS OF HIGHER ORDERS
11
作者 汤光宋 原存德 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1995年第9期883-890,共8页
Because of the extensive applications of nonlinear ordinary differential equation in physics,mechanics and cybernetics,there have been many papers on the exact solution to differential equation in some major publicati... Because of the extensive applications of nonlinear ordinary differential equation in physics,mechanics and cybernetics,there have been many papers on the exact solution to differential equation in some major publications both at home and abroad in recent years Based on these papers and in virtue of Leibniz formula,and transformation set technique,this paper puts forth the solution to nonlinear ordinary differential equation set of higher-orders, moveover,its integrability is proven.The results obtained are the generalization of those in the references. 展开更多
关键词 nonlinear ordinary differential equation set.transformation set.integrable type
下载PDF
A Study on the Effects of Internal Heat Generation on the Thermal Performance of Solid and Porous Fins using Differential Transformation Method
12
作者 M.G.Sobamowo O.A.Adedibu +1 位作者 O.A.Adeleye A.O.Adesina 《Semiconductor Science and Information Devices》 2020年第1期29-36,共8页
In this study,the impacts of internal heat generation on heat transfer enhancement of porous fin is theoretical investigated using differential transform method.The parametric studies reveal that porosity enhances the... In this study,the impacts of internal heat generation on heat transfer enhancement of porous fin is theoretical investigated using differential transform method.The parametric studies reveal that porosity enhances the fin heat dissipating capacity but the internal heat generation decreases the heat enhancement capacity of extended surface.Also,it is established that when the internal heat parameter increases to some certain values,some negative effects are recorded where the fin stores heat rather than dissipating it.This scenario defeats the prime purpose of the cooling fin.Additionally,it is established in the present study that the limiting value of porosity parameter for thermal stability for the passive device increases as internal heat parameter increases.This shows that although the internal heat parameter can help assist higher range and value of thermal stability of the fin,it produces negative effect which greatly defeats the ultimate purpose of the fin.The results in the work will help in fin design for industrial applications where internal heat generation is involved. 展开更多
关键词 Thermal analysis Solid and porous fins Thermal performance Temperature-dependent internal heat generation differential transformation method
下载PDF
Mean Square Solutions of Second-Order Random Differential Equations by Using the Differential Transformation Method
13
作者 Ayad R. Khudair S. A. M. Haddad Sanaa L. Khalaf 《Open Journal of Applied Sciences》 2016年第4期287-297,共11页
The differential transformation method (DTM) is applied to solve the second-order random differential equations. Several examples are represented to demonstrate the effectiveness of the proposed method. The results sh... The differential transformation method (DTM) is applied to solve the second-order random differential equations. Several examples are represented to demonstrate the effectiveness of the proposed method. The results show that DTM is an efficient and accurate technique for finding exact and approximate solutions. 展开更多
关键词 Random differential Equations Stochastic differential Equation differential Transformation Method
下载PDF
Application of the Hybrid Differential Transform Method to the Nonlinear Equations
14
作者 Inci Cilingir Sungu* Huseyin Demir 《Applied Mathematics》 2012年第3期246-250,共5页
In this paper, a hybrid method is introduced briefly to predict the behavior of the non-linear partial differential equations. The method is hybrid in the sense that different numerical methods, differential transform... In this paper, a hybrid method is introduced briefly to predict the behavior of the non-linear partial differential equations. The method is hybrid in the sense that different numerical methods, differential transform and finite differences, are used in different subdomains. Our aim of this approach is to combine the flexibility of differential transform and the efficiency of finite differences. An explicit hybrid method for the transient response of inhomogeneous nonlinear partial differential equations is presented;applying finite difference scheme on the fixed grid size is used to approximate the space discretisation, whereas the differential transform method is used for time operator. Comparison of the efficiency of the different approaches is a very important aspect of this study. In our test cases, the hybrid approach is faster than the corresponding highly optimized finite difference method in two dimensional computations. We compared our hybrid approach’s results with the exact and/or numerical solutions of PDE which obtained from Adomian Decomposition Method. Results show that the hybrid approach may be an important tool to reduce the execution time and memory requirements for large scale computations and get remarkable results in predicting the solutions of nonlinear initial value problems. 展开更多
关键词 Hybrid differential Transform/Finite Difference Method Nonlinear Initial Value Problems Numerical Solution
下载PDF
Bifurcation and Chaos Analysis of Nonlinear Rotor System with Axial-grooved Gas-lubricated Journal Bearing Support 被引量:9
15
作者 ZHANG Yongfang HEI Di +2 位作者 Lü Yanjun WANG Quandai MüLLER Norbert 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期358-368,共11页
Axial-grooved gas-lubricated journal bearings have been widely applied to precision instrument due to their high accuracy, low friction, low noise and high stability. The rotor system with axial-grooved gas-lubricated... Axial-grooved gas-lubricated journal bearings have been widely applied to precision instrument due to their high accuracy, low friction, low noise and high stability. The rotor system with axial-grooved gas-lubricated journal bearing support is a typical nonlinear dynamic system. The nonlinear analysis measures have to be adopted to analyze the behaviors of the axial-grooved gas-lubricated journal bearing-rotor nonlinear system as the linear analysis measures fail. The bifurcation and chaos of nonlinear rotor system with three axial-grooved gas-lubricated journal bearing support are investigated by nonlinear dynamics theory. A time-dependent mathematical model is established to describe the pressure distribution in the axial-grooved compressible gas-lubricated journal bearing. The time-dependent compressible gas-lubricated Reynolds equation is solved by the differential transformation method. The gyroscopic effect of the rotor supported by gas-lubricated journal bearing with three axial grooves is taken into consideration in the model of the system, and the dynamic equation of motion is calculated by the modified Wilson-0-based method. To analyze the unbalanced responses of the rotor system supported by finite length gas-lubricated journal bearings, such as bifurcation and chaos, the bifurcation diagram, the orbit diagram, the Poincar6 map, the time series and the frequency spectrum are employed. The numerical results reveal that the nonlinear gas film forces have a significant influence on the stability of rotor system and there are the rich nonlinear phenomena, such as the periodic, period-doubling, quasi-periodic, period-4 and chaotic motion, and so on. The proposed models and numerical results can provide a theoretical direction to the design of axial-grooved gas-lubricated journal bearing-rotor system. 展开更多
关键词 axial-grooved gas journal bearing differential transformation method nonlinear BIFURCATION CHAOS
下载PDF
Kerosene-alumina nanofluid flow and heat transfer for cooling application 被引量:9
16
作者 M.Mahmoodi Sh.Kandelousi 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期983-990,共8页
Kerosene-alumina nanofluid flow and heat transfer in the presence of magnetic field are studied. The basic partial differential equations are reduced to ordinary differential equations which are solved semi analytical... Kerosene-alumina nanofluid flow and heat transfer in the presence of magnetic field are studied. The basic partial differential equations are reduced to ordinary differential equations which are solved semi analytically using differential transformation method. Velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number are determined analytically. The influence of pertinent parameters such as magnetic parameter, nanofluid volume fraction, viscosity parameter and Eckert number on the flow and heat transfer characteristics is discussed. Results indicate that skin friction coefficient decreases with increase of magnetic parameter, nanofluid volume fraction and viscosity parameter. Nusselt number increases with increase of magnetic parameter and nanofluid volume fraction while it decreases with increase of Eckert number and viscosity parameter. 展开更多
关键词 magnetic field NANOFLUID heat transfer differential transformation method
下载PDF
Thermal analysis of a constructal T-shaped porous fin with simultaneous heat and mass transfer 被引量:4
17
作者 Saheera Azmi Hazarika Tuhin Deshamukhya +1 位作者 Dipankar Bhanja Sujit Nath 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第9期1121-1136,共16页
The present work establishes an analytical model for computing the temperature distribution, fin efficiency and optimum design parameters of a constructal T-shaped porous fin operating in fully wet condition. For more... The present work establishes an analytical model for computing the temperature distribution, fin efficiency and optimum design parameters of a constructal T-shaped porous fin operating in fully wet condition. For more practical results, this study considers a cubic polynomial relationship between the humidity ratio of saturated air and the corresponding fin surface temperature. The temperature distribution has been determined by solving the highly non-linear governing equations using a semi-analytical transformation technique called Differential Transform Method. A comparison of the results with that of a numerical model shows that this transformation method is a very efficient and convenient tool for solution of non-linear problems. The effects of various geometric, thermo-physical and psychometric parameters on the temperature distribution, fin efficiency and optimum design condition have been investigated. Also, a comparison has been presented between solid and porous fins and the results point out that by selecting an appropriate value of porosity, the heat transfer rate can be increased than the corresponding solid fin. 展开更多
关键词 CONSTRUCTAL POROUS Mass transfer ANALYTICAL Optimization differential Transform Method
下载PDF
Generalized covariant differentiation and axiom-based tensor analysis 被引量:3
18
作者 Yajun YIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第3期379-394,共16页
This paper reports the new progresses in the axiomatization of tensor anal- ysis, including the thought of axiomatization, the concept of generalized components, the axiom of covariant form invariability, the axiomati... This paper reports the new progresses in the axiomatization of tensor anal- ysis, including the thought of axiomatization, the concept of generalized components, the axiom of covariant form invariability, the axiomatized definition, the algebraic structure, the transformation group, and the simple calculation of generalized covariant differentia- tions. These progresses strengthen the tendency of the axiomatization of tensor analysis. 展开更多
关键词 tensor analysis axiom of covariant form invariability generalized compo-nent generalized covariant differentiation covariant differential transformation group
下载PDF
Dynamical Behaviors of Nonlinear Coronavirus (COVID-19) Model with Numerical Studies 被引量:3
19
作者 Khaled A.Gepreel Mohamed S.Mohamed +1 位作者 Hammad Alotaibi Amr M.S.Mahdy 《Computers, Materials & Continua》 SCIE EI 2021年第4期675-686,共12页
The development of mathematical modeling of infectious diseases is a key research area in various elds including ecology and epidemiology.One aim of these models is to understand the dynamics of behavior in infectious... The development of mathematical modeling of infectious diseases is a key research area in various elds including ecology and epidemiology.One aim of these models is to understand the dynamics of behavior in infectious diseases.For the new strain of coronavirus(COVID-19),there is no vaccine to protect people and to prevent its spread so far.Instead,control strategies associated with health care,such as social distancing,quarantine,travel restrictions,can be adopted to control the pandemic of COVID-19.This article sheds light on the dynamical behaviors of nonlinear COVID-19 models based on two methods:the homotopy perturbation method(HPM)and the modied reduced differential transform method(MRDTM).We invoke a novel signal ow graph that is used to describe the COVID-19 model.Through our mathematical studies,it is revealed that social distancing between potentially infected individuals who are carrying the virus and healthy individuals can decrease or interrupt the spread of the virus.The numerical simulation results are in reasonable agreement with the study predictions.The free equilibrium and stability point for the COVID-19 model are investigated.Also,the existence of a uniformly stable solution is proved. 展开更多
关键词 Nonlinear COVID-19 model equilibrium point stability existence of uniformly stable signal ow graph homotopy perturbation method reduced differential transform method
下载PDF
Approximate solutions to MHD Falkner-Skan flow over permeable wall 被引量:2
20
作者 苏晓红 郑连存 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第4期401-408,共8页
The magnetohydrodynamic (MHD) Falkner-Skan boundary layer flow over a permeable wall in the presence of a transverse magnetic field is examined. The approximate solutions and skin friction coefficients of the MHD bo... The magnetohydrodynamic (MHD) Falkner-Skan boundary layer flow over a permeable wall in the presence of a transverse magnetic field is examined. The approximate solutions and skin friction coefficients of the MHD boundary layer flow are obtained by using a method that couples the differential transform method (DTM) with the Pade approximation called DTM-Pade. The approximate solutions are expressed in the form of a power series that can be easily computed with an iterative procedure. The approximate solutions are tabulated, plotted for the values of different parameters and compared with the numerical ones obtained by employing the shooting technique. It is found that the approximate solution agrees very well with the numerical solution, showing the reliability and validity of the present work. Moreover, the effects of various physical parameters on the boundary layer flow are presented graphically and discussed. 展开更多
关键词 Falkner-Skan similarity solution magnetohydrodynamic (MHD) boundary layer flow differential transform method (DTM)
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部