Estimation of power transformer no-load loss is a critical issue in the design of distribution transformers. Any deviation in estimation of the core losses during the design stage can lead to a financial penalty for t...Estimation of power transformer no-load loss is a critical issue in the design of distribution transformers. Any deviation in estimation of the core losses during the design stage can lead to a financial penalty for the transformer manufacturer. In this paper an effective and novel method is proposed to determine all components of the iron core losses applying a combination of the empirical and numerical techniques. In this method at the first stage all computable components of the core losses are calculated, using Finite Element Method (FEM) modeling and analysis of the transformer iron core. This method takes into account magnetic sheets anisotropy, joint losses and stacking holes. Next, a Quadratic Programming (QP) optimization technique is employed to estimate the incomputable components of the core losses. This method provides a chance for improvement of the core loss estimation over the time when more measured data become available. The optimization process handles the singular deviations caused by different manufacturing machineries and labor during the transformer manufacturing and overhaul process. Therefore, application of this method enables different companies to obtain different results for the same designs and materials employed, using their historical data. Effectiveness of this method is verified by inspection of 54 full size distribution transformer measurement data.展开更多
由于水下环境的多样性和光在水中受到的散射及选择性吸收作用,采集到的水下图像通常会产生严重的质量退化问题,如颜色偏差、清晰度低和亮度低等,为解决以上问题,本文提出了一种基于Transformer和生成对抗网络的水下图像增强算法。以生...由于水下环境的多样性和光在水中受到的散射及选择性吸收作用,采集到的水下图像通常会产生严重的质量退化问题,如颜色偏差、清晰度低和亮度低等,为解决以上问题,本文提出了一种基于Transformer和生成对抗网络的水下图像增强算法。以生成对抗网络为基础架构,结合编码解码结构、基于空间自注意力机制的全局特征建模Transformer模块和通道级多尺度特征融合Transformer模块构建了TGAN(generative adversarial network with transformer)网络增强模型,重点关注水下图像衰减更严重的颜色通道和空间区域,有效增强了图像细节并解决了颜色偏差问题。此外,设计了一种结合RGB和LAB颜色空间的多项损失函数,约束网络增强模型的对抗训练。实验结果表明,与CLAHE(contrast limited adaptive histogram equalization)、UDCP(underwater dark channel prior)、UWCNN(underwater based on convolutional neural network)、FUnIE-GAN(fast underwater image enhancement for improved visual perception)等典型水下图像增强算法相比,所提算法增强后的水下图像在清晰度、细节纹理和色彩表现等方面都有所提升,客观评价指标如峰值信噪比、结构相似性和水下图像质量度量的平均值分别提升了5.8%、1.8%和3.6%,有效地提升了水下图像的视觉感知效果。展开更多
Breast cancer has become a killer of women's health nowadays.In order to exploit the potential representational capabilities of the models more comprehensively,we propose a multi-model fusion strategy.Specifically...Breast cancer has become a killer of women's health nowadays.In order to exploit the potential representational capabilities of the models more comprehensively,we propose a multi-model fusion strategy.Specifically,we combine two differently structured deep learning models,ResNet101 and Swin Transformer(SwinT),with the addition of the Convolutional Block Attention Module(CBAM)attention mechanism,which makes full use of SwinT's global context information modeling ability and ResNet101's local feature extraction ability,and additionally the cross entropy loss function is replaced by the focus loss function to solve the problem of unbalanced allocation of breast cancer data sets.The multi-classification recognition accuracies of the proposed fusion model under 40X,100X,200X and 400X BreakHis datasets are 97.50%,96.60%,96.30 and 96.10%,respectively.Compared with a single SwinT model and ResNet 101 model,the fusion model has higher accuracy and better generalization ability,which provides a more effective method for screening,diagnosis and pathological classification of female breast cancer.展开更多
Retinal vessel segmentation in fundus images plays an essential role in the screening,diagnosis,and treatment of many diseases.The acquired fundus images generally have the following problems:uneven illumination,high ...Retinal vessel segmentation in fundus images plays an essential role in the screening,diagnosis,and treatment of many diseases.The acquired fundus images generally have the following problems:uneven illumination,high noise,and complex structure.It makes vessel segmentation very challenging.Previous methods of retinal vascular segmentation mainly use convolutional neural networks on U Network(U-Net)models,and they have many limitations and shortcomings,such as the loss of microvascular details at the end of the vessels.We address the limitations of convolution by introducing the transformer into retinal vessel segmentation.Therefore,we propose a hybrid method for retinal vessel segmentation based on modulated deformable convolution and the transformer,named DT-Net.Firstly,multi-scale image features are extracted by deformable convolution and multi-head selfattention(MHSA).Secondly,image information is recovered,and vessel morphology is refined by the proposed transformer decoder block.Finally,the local prediction results are obtained by the side output layer.The accuracy of the vessel segmentation is improved by the hybrid loss function.Experimental results show that our method obtains good segmentation performance on Specificity(SP),Sensitivity(SE),Accuracy(ACC),Curve(AUC),and F1-score on three publicly available fundus datasets such as DRIVE,STARE,and CHASE_DB1.展开更多
At present,power electronic transformers(PETs)have been widely used in power systems.With the increase of PET capacity to the megawatt level.the problem of increased losses need to be taken seriously.As an important i...At present,power electronic transformers(PETs)have been widely used in power systems.With the increase of PET capacity to the megawatt level.the problem of increased losses need to be taken seriously.As an important indicator of power electronic device designing,losses have always been the focus of attention.At present,the losses are generally measured through experiments,but it takes a lot of time and is difficult to quantitatively analyze the internal distribution of PET losses.To solve the above problems,this article first qualitatively analyzes the losses of power electronic devices and proposes a loss calculation method based on pure simulation.This method uses the Discrete State Event Driven(DSED)modeling method to solve the problem of slow simulation speed of large-capacity power electronic devices and uses a loss calculation method that considers the operating conditions of the device to improve the calculation accuracy.For the PET prototype in this article,a losses model of the PET is established.The comparison of experimental and simulation results verifies the feasibility of the losses model.Then the losses composition of PET was analyzed to provide reference opinions for actual operation.It can help pre-analyze the losses distribution of PET,thereby providing a potential method for improving system efficiency.展开更多
At present,convolutional neural networks(CNNs)and transformers surpass humans in many situations(such as face recognition and object classification),but do not work well in identifying fibers in textile surface images...At present,convolutional neural networks(CNNs)and transformers surpass humans in many situations(such as face recognition and object classification),but do not work well in identifying fibers in textile surface images.Hence,this paper proposes an architecture named FiberCT which takes advantages of the feature extraction capability of CNNs and the long-range modeling capability of transformer decoders to adaptively extract multiple types of fiber features.Firstly,the convolution module extracts fiber features from the input textile surface images.Secondly,these features are sent into the transformer decoder module where label embeddings are compared with the features of each type of fibers through multi-head cross-attention and the desired features are pooled adaptively.Finally,an asymmetric loss further purifies the extracted fiber representations.Experiments show that FiberCT can more effectively extract the representations of various types of fibers and improve fiber identification accuracy than state-of-the-art multi-label classification approaches.展开更多
In order to deploy short-range wireless communication devices in the primary transformer substation, a Maximum Inner Product(MIP) Method is proposed to extract the path-loss parameters in 110 kV and 220 kV primary tra...In order to deploy short-range wireless communication devices in the primary transformer substation, a Maximum Inner Product(MIP) Method is proposed to extract the path-loss parameters in 110 kV and 220 kV primary transformer substations. The maximum inner product of the testing data is calculated to find out the loss index n and the standard deviation σ, and then the pathloss models can be set up. By comparing the MIP with Minimum Mean Square estimation(MMSE) and Cumulative Sum(CUSUM), MIP can match the measured values best. In order to apply the MIP path-loss model, under the initial signal to noise ratio(SNR) at 5 dB and 10 dB, a ZigBee simulation system is constructed to validate the situation that bit error rate(BER) varies with distance. And the ZigBee devices with 5 units are tested in a 220 kV primary transformer substation. The result of the test proves that the path-loss model is accurate.展开更多
文摘Estimation of power transformer no-load loss is a critical issue in the design of distribution transformers. Any deviation in estimation of the core losses during the design stage can lead to a financial penalty for the transformer manufacturer. In this paper an effective and novel method is proposed to determine all components of the iron core losses applying a combination of the empirical and numerical techniques. In this method at the first stage all computable components of the core losses are calculated, using Finite Element Method (FEM) modeling and analysis of the transformer iron core. This method takes into account magnetic sheets anisotropy, joint losses and stacking holes. Next, a Quadratic Programming (QP) optimization technique is employed to estimate the incomputable components of the core losses. This method provides a chance for improvement of the core loss estimation over the time when more measured data become available. The optimization process handles the singular deviations caused by different manufacturing machineries and labor during the transformer manufacturing and overhaul process. Therefore, application of this method enables different companies to obtain different results for the same designs and materials employed, using their historical data. Effectiveness of this method is verified by inspection of 54 full size distribution transformer measurement data.
文摘由于水下环境的多样性和光在水中受到的散射及选择性吸收作用,采集到的水下图像通常会产生严重的质量退化问题,如颜色偏差、清晰度低和亮度低等,为解决以上问题,本文提出了一种基于Transformer和生成对抗网络的水下图像增强算法。以生成对抗网络为基础架构,结合编码解码结构、基于空间自注意力机制的全局特征建模Transformer模块和通道级多尺度特征融合Transformer模块构建了TGAN(generative adversarial network with transformer)网络增强模型,重点关注水下图像衰减更严重的颜色通道和空间区域,有效增强了图像细节并解决了颜色偏差问题。此外,设计了一种结合RGB和LAB颜色空间的多项损失函数,约束网络增强模型的对抗训练。实验结果表明,与CLAHE(contrast limited adaptive histogram equalization)、UDCP(underwater dark channel prior)、UWCNN(underwater based on convolutional neural network)、FUnIE-GAN(fast underwater image enhancement for improved visual perception)等典型水下图像增强算法相比,所提算法增强后的水下图像在清晰度、细节纹理和色彩表现等方面都有所提升,客观评价指标如峰值信噪比、结构相似性和水下图像质量度量的平均值分别提升了5.8%、1.8%和3.6%,有效地提升了水下图像的视觉感知效果。
基金By the National Natural Science Foundation of China(NSFC)(No.61772358),the National Key R&D Program Funded Project(No.2021YFE0105500),and the Jiangsu University‘Blue Project’.
文摘Breast cancer has become a killer of women's health nowadays.In order to exploit the potential representational capabilities of the models more comprehensively,we propose a multi-model fusion strategy.Specifically,we combine two differently structured deep learning models,ResNet101 and Swin Transformer(SwinT),with the addition of the Convolutional Block Attention Module(CBAM)attention mechanism,which makes full use of SwinT's global context information modeling ability and ResNet101's local feature extraction ability,and additionally the cross entropy loss function is replaced by the focus loss function to solve the problem of unbalanced allocation of breast cancer data sets.The multi-classification recognition accuracies of the proposed fusion model under 40X,100X,200X and 400X BreakHis datasets are 97.50%,96.60%,96.30 and 96.10%,respectively.Compared with a single SwinT model and ResNet 101 model,the fusion model has higher accuracy and better generalization ability,which provides a more effective method for screening,diagnosis and pathological classification of female breast cancer.
基金supported in part by the National Natural Science Foundation of China under Grant 61972267the National Natural Science Foundation of Hebei Province under Grant F2018210148the University Science Research Project of Hebei Province under Grant ZD2021334.
文摘Retinal vessel segmentation in fundus images plays an essential role in the screening,diagnosis,and treatment of many diseases.The acquired fundus images generally have the following problems:uneven illumination,high noise,and complex structure.It makes vessel segmentation very challenging.Previous methods of retinal vascular segmentation mainly use convolutional neural networks on U Network(U-Net)models,and they have many limitations and shortcomings,such as the loss of microvascular details at the end of the vessels.We address the limitations of convolution by introducing the transformer into retinal vessel segmentation.Therefore,we propose a hybrid method for retinal vessel segmentation based on modulated deformable convolution and the transformer,named DT-Net.Firstly,multi-scale image features are extracted by deformable convolution and multi-head selfattention(MHSA).Secondly,image information is recovered,and vessel morphology is refined by the proposed transformer decoder block.Finally,the local prediction results are obtained by the side output layer.The accuracy of the vessel segmentation is improved by the hybrid loss function.Experimental results show that our method obtains good segmentation performance on Specificity(SP),Sensitivity(SE),Accuracy(ACC),Curve(AUC),and F1-score on three publicly available fundus datasets such as DRIVE,STARE,and CHASE_DB1.
基金the National Key Research and Development Program of China(2017YFB0903200).
文摘At present,power electronic transformers(PETs)have been widely used in power systems.With the increase of PET capacity to the megawatt level.the problem of increased losses need to be taken seriously.As an important indicator of power electronic device designing,losses have always been the focus of attention.At present,the losses are generally measured through experiments,but it takes a lot of time and is difficult to quantitatively analyze the internal distribution of PET losses.To solve the above problems,this article first qualitatively analyzes the losses of power electronic devices and proposes a loss calculation method based on pure simulation.This method uses the Discrete State Event Driven(DSED)modeling method to solve the problem of slow simulation speed of large-capacity power electronic devices and uses a loss calculation method that considers the operating conditions of the device to improve the calculation accuracy.For the PET prototype in this article,a losses model of the PET is established.The comparison of experimental and simulation results verifies the feasibility of the losses model.Then the losses composition of PET was analyzed to provide reference opinions for actual operation.It can help pre-analyze the losses distribution of PET,thereby providing a potential method for improving system efficiency.
基金National Natural Science Foundation of China(No.61972081)Fundamental Research Funds for the Central Universities,China(No.2232023Y-01)Natural Science Foundation of Shanghai,China(No.22ZR1400200)。
文摘At present,convolutional neural networks(CNNs)and transformers surpass humans in many situations(such as face recognition and object classification),but do not work well in identifying fibers in textile surface images.Hence,this paper proposes an architecture named FiberCT which takes advantages of the feature extraction capability of CNNs and the long-range modeling capability of transformer decoders to adaptively extract multiple types of fiber features.Firstly,the convolution module extracts fiber features from the input textile surface images.Secondly,these features are sent into the transformer decoder module where label embeddings are compared with the features of each type of fibers through multi-head cross-attention and the desired features are pooled adaptively.Finally,an asymmetric loss further purifies the extracted fiber representations.Experiments show that FiberCT can more effectively extract the representations of various types of fibers and improve fiber identification accuracy than state-of-the-art multi-label classification approaches.
基金the scientific project supported by the National Natural Science Foundation of China (No. 61571063)supported by the Beijing Municipal Natural Science Foundation (No. 3182028)
文摘In order to deploy short-range wireless communication devices in the primary transformer substation, a Maximum Inner Product(MIP) Method is proposed to extract the path-loss parameters in 110 kV and 220 kV primary transformer substations. The maximum inner product of the testing data is calculated to find out the loss index n and the standard deviation σ, and then the pathloss models can be set up. By comparing the MIP with Minimum Mean Square estimation(MMSE) and Cumulative Sum(CUSUM), MIP can match the measured values best. In order to apply the MIP path-loss model, under the initial signal to noise ratio(SNR) at 5 dB and 10 dB, a ZigBee simulation system is constructed to validate the situation that bit error rate(BER) varies with distance. And the ZigBee devices with 5 units are tested in a 220 kV primary transformer substation. The result of the test proves that the path-loss model is accurate.