Most viruses and transposons serve as effective carriers for the introduction of foreign DNA up to 11 kb into vertebrate genomes.However,their activity markedly diminishes with payloads exceeding 11 kb.Expanding the p...Most viruses and transposons serve as effective carriers for the introduction of foreign DNA up to 11 kb into vertebrate genomes.However,their activity markedly diminishes with payloads exceeding 11 kb.Expanding the payload capacity of transposons could facilitate more sophisticated cargo designs,improving the regulation of expression and minimizing mutagenic risks associated with molecular therapeutics,metabolic engineering,and transgenic animal production.In this study,we improved the Tol2 transposon by increasing protein expression levels using a translational enhancer(QBI SP163,ST)and enhanced the nuclear targeting ability using the nuclear localization protein H2B(SHT).The modified Tol2 and ST transposon efficiently integrated large DNA cargos into human cell cultures(H1299),comparable to the well-established super PiggyBac system.Furthermore,mRNA from ST and SHT showed a significant increase in transgene delivery efficiency of large DNA payloads(8 kb,14 kb,and 24 kb)into zebrafish(Danio rerio).This study presents a modified Tol2 transposon as an enhanced nonviral vector for the delivery of large DNA payloads in transgenic applications.展开更多
Recombinant adenovirus serotype 5(Ad5)vector has been widely applied in vaccine development targeting infectious diseases,such as Ebola virus disease and coronavirus disease 2019(COVID-19).However,the high prevalence ...Recombinant adenovirus serotype 5(Ad5)vector has been widely applied in vaccine development targeting infectious diseases,such as Ebola virus disease and coronavirus disease 2019(COVID-19).However,the high prevalence of preexisting anti-vector immunity compromises the immunogenicity of Ad5-based vaccines.Thus,there is a substantial unmet need to minimize preexisting immunity while improving the insert-induced immunity of Ad5 vectors.Herein,we address this need by utilizing biocompatible nanoparticles to modulate Ad5–host interactions.We show that positively charged human serum albumin nanoparticles((+)HSAnp),which are capable of forming a complex with Ad5,significantly increase the transgene expression of Ad5 in both coxsackievirus–adenovirus receptor-positive and-negative cells.Furthermore,in charge-and dose-dependent manners,Ad5/(+)HSAnp complexes achieve robust(up to227-fold higher)and long-term(up to 60 days)transgene expression in the lungs of mice following intranasal instillation.Importantly,in the presence of preexisting anti-Ad5 immunity,complexed Ad5-based Ebola and COVID-19 vaccines significantly enhance antigen-specific humoral response and mucosal immunity.These findings suggest that viral aggregation and charge modification could be leveraged to engineer enhanced viral vectors for vaccines and gene therapies.展开更多
A fast and efficient recognition method of transgenic lines will greatly improve detection efficiency and reduce cost.In this study,we successfully identified the transgenic soybean plants by the color.We isolated a G...A fast and efficient recognition method of transgenic lines will greatly improve detection efficiency and reduce cost.In this study,we successfully identified the transgenic soybean plants by the color.We isolated a GmW1 gene encoding a flavonoid 3'5'-hydroxylase from a soybean cultivar ZH42(purple flower).We found that purple flowers occurred in the overexpression lines in the Jack and Williams 82 backgrounds(white flower).All plants with purple flowers were positive,and this trait seems stably inherited in the offspring.We have also obtained the editing plants,which were classified into three types according to the different flower colors appeared.We analyzed the phenotype and the homozygous types of the T_1mutants.We also found that a correspondence between flower color and stem color.This study provides a visible color reporter on soybean transformation.It can be quickly and early to identify the transgenic soybean plants by stem color of seedlings,which substantially reduces the amount of labor and cost.展开更多
基金supported by the National Science and Technology Innovation 2030 Major Projects(2021ZD0202200)National Natural Science Foundation of China(32171090,81970264)+1 种基金Shanghai Science and Technology Commission(21ZR1482600)2023 Youth Innovation Promotion Association CAS。
文摘Most viruses and transposons serve as effective carriers for the introduction of foreign DNA up to 11 kb into vertebrate genomes.However,their activity markedly diminishes with payloads exceeding 11 kb.Expanding the payload capacity of transposons could facilitate more sophisticated cargo designs,improving the regulation of expression and minimizing mutagenic risks associated with molecular therapeutics,metabolic engineering,and transgenic animal production.In this study,we improved the Tol2 transposon by increasing protein expression levels using a translational enhancer(QBI SP163,ST)and enhanced the nuclear targeting ability using the nuclear localization protein H2B(SHT).The modified Tol2 and ST transposon efficiently integrated large DNA cargos into human cell cultures(H1299),comparable to the well-established super PiggyBac system.Furthermore,mRNA from ST and SHT showed a significant increase in transgene delivery efficiency of large DNA payloads(8 kb,14 kb,and 24 kb)into zebrafish(Danio rerio).This study presents a modified Tol2 transposon as an enhanced nonviral vector for the delivery of large DNA payloads in transgenic applications.
基金supported in part by the grant from National Natural Science Foundation of China(82171818,81703048,82041019,and 82101919)the grant from Defense Industrial Technology Development Program of China(JCKY2020802B001)Beijing Municipal Science and Technology Commission(Z201100005420024)。
文摘Recombinant adenovirus serotype 5(Ad5)vector has been widely applied in vaccine development targeting infectious diseases,such as Ebola virus disease and coronavirus disease 2019(COVID-19).However,the high prevalence of preexisting anti-vector immunity compromises the immunogenicity of Ad5-based vaccines.Thus,there is a substantial unmet need to minimize preexisting immunity while improving the insert-induced immunity of Ad5 vectors.Herein,we address this need by utilizing biocompatible nanoparticles to modulate Ad5–host interactions.We show that positively charged human serum albumin nanoparticles((+)HSAnp),which are capable of forming a complex with Ad5,significantly increase the transgene expression of Ad5 in both coxsackievirus–adenovirus receptor-positive and-negative cells.Furthermore,in charge-and dose-dependent manners,Ad5/(+)HSAnp complexes achieve robust(up to227-fold higher)and long-term(up to 60 days)transgene expression in the lungs of mice following intranasal instillation.Importantly,in the presence of preexisting anti-Ad5 immunity,complexed Ad5-based Ebola and COVID-19 vaccines significantly enhance antigen-specific humoral response and mucosal immunity.These findings suggest that viral aggregation and charge modification could be leveraged to engineer enhanced viral vectors for vaccines and gene therapies.
基金supported by the Agricultural Science and Technology Innovation Program of Chinese Academy of Agriculture Sciences(S2022ZD03)。
文摘A fast and efficient recognition method of transgenic lines will greatly improve detection efficiency and reduce cost.In this study,we successfully identified the transgenic soybean plants by the color.We isolated a GmW1 gene encoding a flavonoid 3'5'-hydroxylase from a soybean cultivar ZH42(purple flower).We found that purple flowers occurred in the overexpression lines in the Jack and Williams 82 backgrounds(white flower).All plants with purple flowers were positive,and this trait seems stably inherited in the offspring.We have also obtained the editing plants,which were classified into three types according to the different flower colors appeared.We analyzed the phenotype and the homozygous types of the T_1mutants.We also found that a correspondence between flower color and stem color.This study provides a visible color reporter on soybean transformation.It can be quickly and early to identify the transgenic soybean plants by stem color of seedlings,which substantially reduces the amount of labor and cost.