This paper studies the influence of the accelerated overtaking process on the vehicles' transient aerodynamic characteristics, through 3-D numerical simulations with dynamic meshes and sliding interface technique. Nu...This paper studies the influence of the accelerated overtaking process on the vehicles' transient aerodynamic characteristics, through 3-D numerical simulations with dynamic meshes and sliding interface technique. Numerical accuracy is verified by experimental results. The aerodynamic characteristics of vehicles in the uniform overtaking process and the accelerated overtaking process are compared. It is shown that the speed variation of the overtaking van would influence the aerodynamic characteristics of the two vans, with greater influence on the overtaken van than on the overtaking van. The simulations of three different accelerated overtaking processes show that the greater the acceleration of the overtaking van, the larger the aerodynamic coefficients of the overtaken van. When the acceleration of the overtaking van increases by 1 m/s2, the maximum drag force, side force and yawing moment coefficients of the overtaken van all increase by more than 6%, to seriously affect the power performance and the stability of the vehicles. The analysis of the pressure fields under different accelerated conditions reveals the cause of variations of the aerodynamic characteristics of vehicles.展开更多
In this article,the processes of vans running into a one-way two-lane road tunnel are simulated numerically using the dynamic mesh technique and RNG k ? ε turbulence model.The transient aerodynamic characteristics a...In this article,the processes of vans running into a one-way two-lane road tunnel are simulated numerically using the dynamic mesh technique and RNG k ? ε turbulence model.The transient aerodynamic characteristics around vans are obtained in three cases:a single van,two vans side-by-side and two vans one after another running into the tunnel,respectively.Through a comparison with the results of the wind tunnel experiment,the transient simulation method is verified.The results show that,when a van runs into the tunnel,the aerodynamic drag coefficient increases near the tunnel entrance,and after entering the tunnel,the side force is generated,pointing to the tunnel wall nearer to the van.When two vans run into the tunnel side-by-side,their drag coefficients increase by 50%,and the side force varies sharply with directions changing twice near the tunnel entrance.When two vans run into tunnel one after another,the aerodynamic characteristics around the van in the front is similar to that of a single van,but the aerodynamic forces on the van behind do not have obvious change.Among the three cases,the aerodynamic forces have a sharp change when two vans run side-by-side,so driving side-by-side into a tunnel should be avoided for safety.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11372166)the Natural Science Foundation of Shandong Province(Grant No.ZR2014ZZM015)
文摘This paper studies the influence of the accelerated overtaking process on the vehicles' transient aerodynamic characteristics, through 3-D numerical simulations with dynamic meshes and sliding interface technique. Numerical accuracy is verified by experimental results. The aerodynamic characteristics of vehicles in the uniform overtaking process and the accelerated overtaking process are compared. It is shown that the speed variation of the overtaking van would influence the aerodynamic characteristics of the two vans, with greater influence on the overtaken van than on the overtaking van. The simulations of three different accelerated overtaking processes show that the greater the acceleration of the overtaking van, the larger the aerodynamic coefficients of the overtaken van. When the acceleration of the overtaking van increases by 1 m/s2, the maximum drag force, side force and yawing moment coefficients of the overtaken van all increase by more than 6%, to seriously affect the power performance and the stability of the vehicles. The analysis of the pressure fields under different accelerated conditions reveals the cause of variations of the aerodynamic characteristics of vehicles.
基金supported by the National Natural Science Foundation of China (Grant No. 10802042)the NaturalScience Foundation of Shandong Province (Grant No.Y2007A04)
文摘In this article,the processes of vans running into a one-way two-lane road tunnel are simulated numerically using the dynamic mesh technique and RNG k ? ε turbulence model.The transient aerodynamic characteristics around vans are obtained in three cases:a single van,two vans side-by-side and two vans one after another running into the tunnel,respectively.Through a comparison with the results of the wind tunnel experiment,the transient simulation method is verified.The results show that,when a van runs into the tunnel,the aerodynamic drag coefficient increases near the tunnel entrance,and after entering the tunnel,the side force is generated,pointing to the tunnel wall nearer to the van.When two vans run into the tunnel side-by-side,their drag coefficients increase by 50%,and the side force varies sharply with directions changing twice near the tunnel entrance.When two vans run into tunnel one after another,the aerodynamic characteristics around the van in the front is similar to that of a single van,but the aerodynamic forces on the van behind do not have obvious change.Among the three cases,the aerodynamic forces have a sharp change when two vans run side-by-side,so driving side-by-side into a tunnel should be avoided for safety.