The Songliao Basin is famous for the Daqing Oilfield, the biggest in China. However, no economic hydrocarbon reservoir has been found in the northeastern Binbei district. Its thermal history, which is of great importa...The Songliao Basin is famous for the Daqing Oilfield, the biggest in China. However, no economic hydrocarbon reservoir has been found in the northeastern Binbei district. Its thermal history, which is of great importance for hydrocarbon generation and migration, is studied with apatite fission track (AFT) thermochronology. Samples with depositional ages of the late Cretaceous (-108-73 Ma) are analyzed. The AFT ages of the samples from reservoir rock (depositional age 〉 76.1 Ma) fall between the late Cretaceous (724-5 Ma) and the early Eocene (414-3 Ma) period, indicating their total annealing after deposition. In contrast, two samples from the main seals of the Qingshankou (depositional age 〉 89.3 Ma) and the Nenjiang Formation (depositional age 〉 73.0 Ma) are not annealed or partially annealed (AFT ages of 974-9 Ma and 704-4 Ma, respectively). Because the maximum burial temperature (〈90 ℃) evidenced by low vitrinite reflectance (Ro〈0.7) is not high enough to account for the AFT total annealing (110-120 ℃), the transient thermal effect arising from the syntectonic fluid flow between the late Cretaceous and the early Eocene is proposed. Transient thermal effects from fluid flow explains the indicated temperature discrepancies between the AFT thermometer and the Ro thermometer because the transient thermal effect from the fluid flow with a temperature high enough (110-120 ℃) to anneal the AFT thermometer does not last long enough (104-105 yrs.) for an enhancement of the Ro (minimum 106- 107 yrs. under the same temperature). This indicates that dating thermal effect from fluid flow might be a new means to reconstruct the tectonic history. It also answers why the samples from the main seals are not annealed because the seals will prohibit fluid flow and supply good thermal insulation. The large-scale fluid flow in the Binbei district calls for a new idea to direct the hydrocarbon exploration.展开更多
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simpli...Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system.展开更多
A theoretical equation is developed which describes the response of the current transients to a constant potential at tubular electrodes for a reversible electrode reaction in the flowing fluid.
To adopt horizontal wells in dual media reservoirs, a good understanding of the related fluid flows is necessary. Most of the recent studies focus on dual porosity media instead of dual permeability media. In this art...To adopt horizontal wells in dual media reservoirs, a good understanding of the related fluid flows is necessary. Most of the recent studies focus on dual porosity media instead of dual permeability media. In this article, through both integral transformation and sink-source superposition, a new Laplace-domain solution is obtained for the slightly-compressible fluid flow in the 3-D dual-permeability media in which the horizontal well is operating in a constant rate of production. Major asymptotic characteristics of diagnosis curves of dimensionless downhole pressure are analyzed by the limited analysis. Effects of parameters of dual-permeability media including mobility ratio k, storativity ratio ω and inter-porosity flow parameter k on the downhote pressure are studied by using the Laplace numerical inversion. The new solution obtained in this article includes and improves the previous results and then can be used as a basis for either pressure transient analysis or formation behavior evaluation for the typical reservoir with horizontal wells.展开更多
The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding...The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.展开更多
The transient growth due to non-normMity is investigated for the Poiseuille- Rayleigh-Benard problem of binary fluids with the Soret effect. For negative separation factors such as ψ = -0.1, it is found that a large ...The transient growth due to non-normMity is investigated for the Poiseuille- Rayleigh-Benard problem of binary fluids with the Soret effect. For negative separation factors such as ψ = -0.1, it is found that a large transient growth can be obtained by the non-normal interaction of the two least-stable-modes, i.e., the upstream and downstream modes, which determine the linear critical boundary curves for small Reynolds numbers. The transient growth is so strong that the optimal energy amplification factor G(t) is up to 10^2 - 10^3. While for positive separation factors such as ψ = 0.1, the transient growth is weak with the order O(I) of the amplification factor, which can even be computed by the least-stable-mode. However, for both cases, the least-stable-mode can govern the long-term behavior of the amplification factor for large time. The results also show that large Reynolds numbers have stabilization effects for the maximum amplification within moderate wave number regions. Meanwhile, much small negative or large positive separation factors and large Rayleigh numbers can enlarge the maximum transient growth of the pure streamwise disturbance with the wavenumber α= 3.14. Moreover, the initial and evolutionary two-dimensional spatial patterns of the large transient growth for the pure streamwise disturbance are exhibited with a plot of the velocity vector, spanwise vorticity, temperature, and concentration field. The initial three-layer cell vorticity struc- ture is revealed. When the amplification factor reaches the maximum Gmax, it develops into one cell structure with large amplification for the vorticity strength.展开更多
An improved compound mathematical model is established to simulate the attenuation of hydraulic transients with laminar-turbulent alternations,which usually occur when the pipeline flow velocity fluctuates near the cr...An improved compound mathematical model is established to simulate the attenuation of hydraulic transients with laminar-turbulent alternations,which usually occur when the pipeline flow velocity fluctuates near the critical velocity.The laminar friction resistance and the turbulent friction resistance are considered respectively in this model by applying different resistance schemes to the characteristics method of fluid transient analysis.The hydraulic transients of the valve closing process are simulated using the model.A more reasonable attenuation of hydraulic transients is obtained.The accurate attenuation is more distinct than that obtained from the traditional mathematical model.The research shows that the hydraulic transient is a type of energy waves,and its attenuation is caused by the friction resistance.The laminar friction resistance is more important than the turbulent friction resistance if the flow velocity is smaller than the critical velocity.Otherwise the turbulent friction resistance is more important.The laminar friction resistance is important in the attenuation of hydraulic transients for the closing process.Thus,it is significant to consider the different resistances separately to obtain more accurate attenuation of hydraulic transients.展开更多
The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in...The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in pipelines. Presently, the method of characteristics is widely used to solve classical hydraulic transient problems. However, when it is used to solve coupling hydraulic transient problems, excessive interpolation errors may be introduced into the results due to unavoidable multiwave interpolated calculations. To deal with the problem, a finite difference scheme based on the Steger- Warming flux vector splitting is proposed. A flux vector splitting scheme is established for the coupling hydraulic transient model of gas-liquid-solid three-phase mixed flow in the pipelines. The flux subvectors are then discretized by the Lax-Wendroff central difference scheme and the Warming-Beam upwind difference scheme with second-order precision in both time and space. Under the Rankine-Hugoniot conditions and the corresponding boundary conditions, an effective solution to those points located at the boundaries is developed, which can avoid the problem beyond the calculation region directly induced by the second-order discrete technique. Numerical and experimental verifications indicate that the proposed scheme has several desirable advantages including high calculation precision, excellent shock wave capture capability without false numerical oscillation, low sensitivity to the Courant number, and good stability.展开更多
A numerical study of partial slip boundary condition is investigated. The stagnation-point flow problem involving some physio-chemical parameters has been elucidated. The process involves developing a multivariate mat...A numerical study of partial slip boundary condition is investigated. The stagnation-point flow problem involving some physio-chemical parameters has been elucidated. The process involves developing a multivariate mathematical model for the flow and transforming it into a coupled univariate equation. Key parameters of interest in the study are the buoyancy force, the surface stretching, the unsteadiness, the radiation, the dissipation effects, the slip effects, the species reaction and the magnetic field parameters. It is concluded that the impact of physio-chemical factors significantly alters the kinematics of the flow in order to optimally achieve desired product characteristics.展开更多
Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are...Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are based on the traditional quasi-steady method. In this work, an improved quasi-steady method along with the transient method was presented to compute the rotordynamic coefficients of a long seal. By comparisons with experimental data, the shortcomings of quasi-steady methods have been identified. Then, the effects of non-uniform incoming flow on seal dynamic coefficients were studied by transient simulations. Results indicate that the long seal has large cross stiffness k and direct mass M which are not good for rotor stability, while the transient method is more suitable for the long seal for its excellent performance in predicting M. When the incoming flow is non-uniform, the stiffness coefficients vary with the eccentric directions. Based on the rotordynamic coefficients under uniform incoming flow, the linearized fluid force formulas, which can consider the effects of non-uniform incoming flow, have been presented and can well explain the varying-stiffness phenomenon.展开更多
The transient flow of liquid in the pipe with fluid machinery is analysed in this pa- per.The theoretic solution of the transient flow produced due to the regulation of fluid machin- ery is found by use of the method ...The transient flow of liquid in the pipe with fluid machinery is analysed in this pa- per.The theoretic solution of the transient flow produced due to the regulation of fluid machin- ery is found by use of the method of the Laplace transformation.展开更多
The 3-D characteristics of the water-air flow patterns in a corridor-shaped air-cushion surge chamber during hydraulic transients need to be considered in the shape optimization. To verify the reliability of the water...The 3-D characteristics of the water-air flow patterns in a corridor-shaped air-cushion surge chamber during hydraulic transients need to be considered in the shape optimization. To verify the reliability of the water-air two-phase model, namely, the volume of fluid model, the process of charging water into a closed air chamber is successfully simulated. Using the model, the 3-D flow characteristics under the load rejection and acceptance conditions within the air-cushion surge chamber of a specific hydro- power station are studied. The free surface waves, the flow patterns, and the pressure changes during the surge wave process are analyzed in detail. The longitudinal flow of water in the long corridor-shaped surge chamber is similar to the open channel flow with respect to the wave propagation, reflection and superposition characteristics. The lumped parameters of the 3-D numerical simulation agree with the results of a 1-D calculation of hydraulic transients in the whole water conveying system, which validates the 3-D method. The 3-D flow structures obtained can be applied to the shape optimization of the chamber.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.40872097 and 41272161)the Major National Science & Technology Program (Grant Nos.2011ZX05006-005 and 2011ZX05006-006)partly funded by the State Key Laboratory for Petroleum Resource and Prospecting (Grant No.KYJJ2012-01-12)
文摘The Songliao Basin is famous for the Daqing Oilfield, the biggest in China. However, no economic hydrocarbon reservoir has been found in the northeastern Binbei district. Its thermal history, which is of great importance for hydrocarbon generation and migration, is studied with apatite fission track (AFT) thermochronology. Samples with depositional ages of the late Cretaceous (-108-73 Ma) are analyzed. The AFT ages of the samples from reservoir rock (depositional age 〉 76.1 Ma) fall between the late Cretaceous (724-5 Ma) and the early Eocene (414-3 Ma) period, indicating their total annealing after deposition. In contrast, two samples from the main seals of the Qingshankou (depositional age 〉 89.3 Ma) and the Nenjiang Formation (depositional age 〉 73.0 Ma) are not annealed or partially annealed (AFT ages of 974-9 Ma and 704-4 Ma, respectively). Because the maximum burial temperature (〈90 ℃) evidenced by low vitrinite reflectance (Ro〈0.7) is not high enough to account for the AFT total annealing (110-120 ℃), the transient thermal effect arising from the syntectonic fluid flow between the late Cretaceous and the early Eocene is proposed. Transient thermal effects from fluid flow explains the indicated temperature discrepancies between the AFT thermometer and the Ro thermometer because the transient thermal effect from the fluid flow with a temperature high enough (110-120 ℃) to anneal the AFT thermometer does not last long enough (104-105 yrs.) for an enhancement of the Ro (minimum 106- 107 yrs. under the same temperature). This indicates that dating thermal effect from fluid flow might be a new means to reconstruct the tectonic history. It also answers why the samples from the main seals are not annealed because the seals will prohibit fluid flow and supply good thermal insulation. The large-scale fluid flow in the Binbei district calls for a new idea to direct the hydrocarbon exploration.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA04Z413)Zhejiang Provincial Natural Science Foundation of China (Grant No. Y1110109)
文摘Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system.
文摘A theoretical equation is developed which describes the response of the current transients to a constant potential at tubular electrodes for a reversible electrode reaction in the flowing fluid.
基金supported by the Important National Science and Technology Specific Projects During the Eleventh five Years Plan Period (Grant No.2008ZX05009-004-03)
文摘To adopt horizontal wells in dual media reservoirs, a good understanding of the related fluid flows is necessary. Most of the recent studies focus on dual porosity media instead of dual permeability media. In this article, through both integral transformation and sink-source superposition, a new Laplace-domain solution is obtained for the slightly-compressible fluid flow in the 3-D dual-permeability media in which the horizontal well is operating in a constant rate of production. Major asymptotic characteristics of diagnosis curves of dimensionless downhole pressure are analyzed by the limited analysis. Effects of parameters of dual-permeability media including mobility ratio k, storativity ratio ω and inter-porosity flow parameter k on the downhote pressure are studied by using the Laplace numerical inversion. The new solution obtained in this article includes and improves the previous results and then can be used as a basis for either pressure transient analysis or formation behavior evaluation for the typical reservoir with horizontal wells.
文摘The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.
基金Project supported by the National Natural Science Foundation of China(Nos.11172049 and11472060)
文摘The transient growth due to non-normMity is investigated for the Poiseuille- Rayleigh-Benard problem of binary fluids with the Soret effect. For negative separation factors such as ψ = -0.1, it is found that a large transient growth can be obtained by the non-normal interaction of the two least-stable-modes, i.e., the upstream and downstream modes, which determine the linear critical boundary curves for small Reynolds numbers. The transient growth is so strong that the optimal energy amplification factor G(t) is up to 10^2 - 10^3. While for positive separation factors such as ψ = 0.1, the transient growth is weak with the order O(I) of the amplification factor, which can even be computed by the least-stable-mode. However, for both cases, the least-stable-mode can govern the long-term behavior of the amplification factor for large time. The results also show that large Reynolds numbers have stabilization effects for the maximum amplification within moderate wave number regions. Meanwhile, much small negative or large positive separation factors and large Rayleigh numbers can enlarge the maximum transient growth of the pure streamwise disturbance with the wavenumber α= 3.14. Moreover, the initial and evolutionary two-dimensional spatial patterns of the large transient growth for the pure streamwise disturbance are exhibited with a plot of the velocity vector, spanwise vorticity, temperature, and concentration field. The initial three-layer cell vorticity struc- ture is revealed. When the amplification factor reaches the maximum Gmax, it develops into one cell structure with large amplification for the vorticity strength.
基金supported by the National Natural Science Foundation of China (No 50709029)the Key Special Program on the Science and Technology of China for the Pollution Control and Treatment of Water Bodies (No 2009ZX07424-004)
文摘An improved compound mathematical model is established to simulate the attenuation of hydraulic transients with laminar-turbulent alternations,which usually occur when the pipeline flow velocity fluctuates near the critical velocity.The laminar friction resistance and the turbulent friction resistance are considered respectively in this model by applying different resistance schemes to the characteristics method of fluid transient analysis.The hydraulic transients of the valve closing process are simulated using the model.A more reasonable attenuation of hydraulic transients is obtained.The accurate attenuation is more distinct than that obtained from the traditional mathematical model.The research shows that the hydraulic transient is a type of energy waves,and its attenuation is caused by the friction resistance.The laminar friction resistance is more important than the turbulent friction resistance if the flow velocity is smaller than the critical velocity.Otherwise the turbulent friction resistance is more important.The laminar friction resistance is important in the attenuation of hydraulic transients for the closing process.Thus,it is significant to consider the different resistances separately to obtain more accurate attenuation of hydraulic transients.
基金supported by the Natural Science Foundation Project of CQ CSTC (No. 2010BB7421)
文摘The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in pipelines. Presently, the method of characteristics is widely used to solve classical hydraulic transient problems. However, when it is used to solve coupling hydraulic transient problems, excessive interpolation errors may be introduced into the results due to unavoidable multiwave interpolated calculations. To deal with the problem, a finite difference scheme based on the Steger- Warming flux vector splitting is proposed. A flux vector splitting scheme is established for the coupling hydraulic transient model of gas-liquid-solid three-phase mixed flow in the pipelines. The flux subvectors are then discretized by the Lax-Wendroff central difference scheme and the Warming-Beam upwind difference scheme with second-order precision in both time and space. Under the Rankine-Hugoniot conditions and the corresponding boundary conditions, an effective solution to those points located at the boundaries is developed, which can avoid the problem beyond the calculation region directly induced by the second-order discrete technique. Numerical and experimental verifications indicate that the proposed scheme has several desirable advantages including high calculation precision, excellent shock wave capture capability without false numerical oscillation, low sensitivity to the Courant number, and good stability.
文摘A numerical study of partial slip boundary condition is investigated. The stagnation-point flow problem involving some physio-chemical parameters has been elucidated. The process involves developing a multivariate mathematical model for the flow and transforming it into a coupled univariate equation. Key parameters of interest in the study are the buoyancy force, the surface stretching, the unsteadiness, the radiation, the dissipation effects, the slip effects, the species reaction and the magnetic field parameters. It is concluded that the impact of physio-chemical factors significantly alters the kinematics of the flow in order to optimally achieve desired product characteristics.
基金Project(51276213)supported by the National Natural Science Foundation of ChinaProject(2013BAF01B00)supported by the National Science and Technology Support Program of China
文摘Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are based on the traditional quasi-steady method. In this work, an improved quasi-steady method along with the transient method was presented to compute the rotordynamic coefficients of a long seal. By comparisons with experimental data, the shortcomings of quasi-steady methods have been identified. Then, the effects of non-uniform incoming flow on seal dynamic coefficients were studied by transient simulations. Results indicate that the long seal has large cross stiffness k and direct mass M which are not good for rotor stability, while the transient method is more suitable for the long seal for its excellent performance in predicting M. When the incoming flow is non-uniform, the stiffness coefficients vary with the eccentric directions. Based on the rotordynamic coefficients under uniform incoming flow, the linearized fluid force formulas, which can consider the effects of non-uniform incoming flow, have been presented and can well explain the varying-stiffness phenomenon.
文摘The transient flow of liquid in the pipe with fluid machinery is analysed in this pa- per.The theoretic solution of the transient flow produced due to the regulation of fluid machin- ery is found by use of the method of the Laplace transformation.
基金support by the National Natural Science Foundation of China(Grant Nos.51039005,50909076)
文摘The 3-D characteristics of the water-air flow patterns in a corridor-shaped air-cushion surge chamber during hydraulic transients need to be considered in the shape optimization. To verify the reliability of the water-air two-phase model, namely, the volume of fluid model, the process of charging water into a closed air chamber is successfully simulated. Using the model, the 3-D flow characteristics under the load rejection and acceptance conditions within the air-cushion surge chamber of a specific hydro- power station are studied. The free surface waves, the flow patterns, and the pressure changes during the surge wave process are analyzed in detail. The longitudinal flow of water in the long corridor-shaped surge chamber is similar to the open channel flow with respect to the wave propagation, reflection and superposition characteristics. The lumped parameters of the 3-D numerical simulation agree with the results of a 1-D calculation of hydraulic transients in the whole water conveying system, which validates the 3-D method. The 3-D flow structures obtained can be applied to the shape optimization of the chamber.