This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly f...This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly from high-voltage (HV) transmission lines to low-voltage (LV) consumers through coupling capacitors and is said to be cost-effective as compared to conventional distribution networks. However, the functionality of such substations is susceptible to various transient phenomena, including ferroresonance and overvoltage occurrences. To address these challenges, the study uses simulations to evaluate the effectiveness of conventional resistor-inductor-capacitor (RLC) filter in mitigating hazardous overvoltage resulting from transients. The proposed methodology entails using standard RLC filter to suppress transients and its associated overvoltage risks. Through a series of MATLAB/Simulink simulations, the research emphasizes the practical effectiveness of this technique. The study examines the impact of transients under varied operational scenarios, including no-load switching conditions, temporary short-circuits, and load on/off events. The primary aim of the article is to assess the viability of using an established technology to manage system instabilities upon the energization of a CCS under no-load circumstances or in case of a short-circuit fault occurring on the primary side of the CCS distribution transformer. The findings underscore the effectiveness of conventional RLC filters in suppressing transients induced by the CCS no-load switching.展开更多
Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron ph...Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron phonon coupling factor G, interfazial thermal resistance R, and thermal conductivity Ks of the substrate. The rear heating-front detecting (RF) method is used to ensure the femtosecond temporal resolution. An intense laser beam is focused on the rear surface to heat the film, and another weak laser beam is focused on the very spot of the front surface to detect the change in the electron temperature. By varying the optical path delay between the two beams, a complete electron temperature profile can be scanned. Different from the normally used single-layer model, the double-layer model involving interfaciM thermal resistance is studied here. The electron temperature cooling profile can be affected by the electron energy transfer into the substrate or the electron-phonon interactions in the metallic films. For multiple-target optimization, the genetic algorithm (GA) is used to obtain both G and R. The experimental result gives a deep understanding of the mechanism of ultra-fast heat transfer in metals.展开更多
Under the inflammable or explosive environment, the direct measurement methods by opening up the explo- sion-proof shell of electrical installations were not adopted. So, it's impossible to have a quantitative analys...Under the inflammable or explosive environment, the direct measurement methods by opening up the explo- sion-proof shell of electrical installations were not adopted. So, it's impossible to have a quantitative analysis on the limit of conducted disturbance for electrical fast transient burst (EFT/B) in such dangerous environments. Transient conducted coupling model, which using EFT/B as its excitation source, can be built based on circuit and electromagnetic field theory. Furthermore, numerical analysis was performed. The results indicate that the capacitive coupling voltage is the same polarity as EFT/B, and is the main disturbance form of conducted coupling in mines. The inductive coupling voltage is reversed polarity with the ca- pacitive coupling voltage, and both peaks appear only in the rising time of EFT/B, which increase with the rising of load resistance. Moreover, the cable coupling voltage on the side of disturbance source is higher than the one on the other side in tunnel. To reduce the common resistance can suppress the resistive coupling disturbance.展开更多
The dynamical equations for a inertial reciprocating machine excited by two rotating eccentric weights were built by the matrix methodology for establishing dynamical equations of discrete systems. A mathematical mode...The dynamical equations for a inertial reciprocating machine excited by two rotating eccentric weights were built by the matrix methodology for establishing dynamical equations of discrete systems. A mathematical model of electromechanical coupling system for the machine was formed by combining the dynamical equations with the state equations of the two motors. The computer simulation to the model was performed for several values of the damping coefficient or the motor power, respectively. The substance of transient behavior of the machine is unveiled by analyzing the results of the computer simulation, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior and engineering design of the equipment.展开更多
The transient finite element technique is applied, and a transient heat conduction model of wet brake friction disk is established. For obtaining the accurate heat flow density mathematic model and avoiding possibly i...The transient finite element technique is applied, and a transient heat conduction model of wet brake friction disk is established. For obtaining the accurate heat flow density mathematic model and avoiding possibly instable thermoelastic stress produced by the non uniform contact pressure of friction pair, a test method is applied to collect accurate contact pressure between the dual sheet steel and friction disk in the combining process. And then the heat-flow density and transient ther mo mechanical coupling simulation are analyzed. At the same time all possible boundary conditions are considered, such as the heat generation, heat conduction problem, relation between friction and contact, variation in load and heat change problem etc. The simulation results show that the me chanical model of thermo mechanical coupling can express well the dynamic characteristics of fric tion disk, and gives perfect reference for more study on thermoelastic distortion of brake friction pairs.展开更多
A mathematical model of electromechanical coupling system for a planar inertial vibrating machine is built by setting up dynamical equations of discrete systems with a matrix methodology proposed. The substance of the...A mathematical model of electromechanical coupling system for a planar inertial vibrating machine is built by setting up dynamical equations of discrete systems with a matrix methodology proposed. The substance of the transient behavior of the machine is unveiled by analyzing the results of the computer simulation to the model, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior of the equipment.展开更多
Accurate calculation of short-circuit electromagnetic force is crucial for both mechanical strength check and the optimal design of gas-insulated transmission lines(GIL).Since the full 3D numerical simulation method i...Accurate calculation of short-circuit electromagnetic force is crucial for both mechanical strength check and the optimal design of gas-insulated transmission lines(GIL).Since the full 3D numerical simulation method is highly time-consuming,a novel lightweight 2D multi-slice electromagnetic field-circuit coupled method for computing transient electromagnetic force is proposed,where appropriate port voltage degrees of freedom(DoFs)are introduced for the solid GIL conductor terminals.When the transient magnetic field equations are combined with the constraint equations of circuit part,including nodal voltage and loop current DoFs,a direct field-circuit coupling scheme is thus derived.The proposed method can simultaneously consider the effect of interphaseshunts and ground wires,as well as the skin effect and proximity effect.It can accurately capture the transient electromagnetic characteristics of GIL spanning from several to tens of kilometers under different short-circuit conditions.The transient electromagnetic forces,as well as the induced voltages and currents of the enclosure,are analysed by the proposed method for both single-phase and three-phase enclosed GIL under various short-circuit conditions.The proposed method has the advantages of high accuracy and lightweight computational cost,and thus it is also suitable for conducting important simulation tasks such as mechanical strength checks during the design optimisation phase of long-distance GIL.展开更多
To perform nuclear reactor simulations in a more realistic manner,the coupling scheme between neutronics and thermal-hydraulics was implemented in the HNET program for both steady-state and transient conditions.For si...To perform nuclear reactor simulations in a more realistic manner,the coupling scheme between neutronics and thermal-hydraulics was implemented in the HNET program for both steady-state and transient conditions.For simplicity,efficiency,and robustness,the matrixfree Newton/Krylov(MFNK)method was applied to the steady-state coupling calculation.In addition,the optimal perturbation size was adopted to further improve the convergence behavior of the MFNK.For the transient coupling simulation,the operator splitting method with a staggered time mesh was utilized to balance the computational cost and accuracy.Finally,VERA Problem 6 with power and boron perturbation and the NEACRP transient benchmark were simulated for analysis.The numerical results show that the MFNK method can outperform Picard iteration in terms of both efficiency and robustness for a wide range of problems.Furthermore,the reasonable agreement between the simulation results and the reference results for the NEACRP transient benchmark verifies the capability of predicting the behavior of the nuclear reactor.展开更多
We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorpt...We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams.Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time.The estimated range is between 5-8 ps for subluminal to superluminal light propagation.展开更多
A transient delay-coupled network was proposed by modifying the standard delay-coupled network with a transient coupling technique to enlarge the synchronization domain of the network, where the synchronization domain...A transient delay-coupled network was proposed by modifying the standard delay-coupled network with a transient coupling technique to enlarge the synchronization domain of the network, where the synchronization domain is the interval of the coupling strength for which the network gets synchronized. The coupling of the transient delay-coupled network is activated when the systems are in a particular region (coupling region) of the phase space and inactivated otherwise, which is different from the standard coupling. The specific synchronization performance of the transient delay-coupled network was investigated through case studies. The relationships between the synchronization domain and the coupling region were obtained by gauging the synchronization index. It is understood that the synchronization domain changes in a non-smooth manner with the variation of the coupling region. In particular, the synchronization domain of a transient delay-coupled network is much larger than that of the standard delay-coupled network when the coupling region is appropriately determined.展开更多
The thermal balance state of high-speed and heavy-load gear transmissionsystem has an important influence on the performance and failure of geartransmission and the design of gear lubrication system. Excessive surface...The thermal balance state of high-speed and heavy-load gear transmissionsystem has an important influence on the performance and failure of geartransmission and the design of gear lubrication system. Excessive surfacetemperature of gear teeth is the main cause of gluing failure of gear contactsurface. To investigate the gear heat distribution in meshing processand discuss the effect of thermal conduction on heat distribution,a finiteelement model of spur gear is presented in the paper which can representgeneral involute spur gears. And a simulation approach is use to calculategear heat distribution in meshing process. By comparing with theoreticalcalculation, the correctness of the simulation method is verified, and theheat distribution of spur gear under the condition of heat conduction isfurther analyzed. The difference between the calculation results with heatconduction and without heat conduction is compared. The research hascertain reference significance for dry gear hobbing and the same type ofthermal-structural coupling analysis.展开更多
针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计...针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计算的有限元离散方程;其次,采用POD降阶算法改善传统瞬态计算中存在的条件数过大及方程阶数过高的问题;同时对于瞬态计算中的时间步长选择问题,提出适用于非线性问题的αATS变步长策略;然后,为验证方法的有效性,基于110 kV油浸式电力变压器绕组的基本结构建立二维八分区数值计算模型,同时将计算结果与基于110 kV绕组的温升实验结果进行对比。数值计算及实验结果表明,所提算法与全阶定步长算法在流场和温度场中的精度几乎相同,且流场计算效率提升约45倍,温度场计算效率提升约38倍,计算速度得到显著提高。这一点在温升实验中同样得到验证,说明该文所提算法的准确性、高效性及一定的工程实用性。展开更多
文摘This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly from high-voltage (HV) transmission lines to low-voltage (LV) consumers through coupling capacitors and is said to be cost-effective as compared to conventional distribution networks. However, the functionality of such substations is susceptible to various transient phenomena, including ferroresonance and overvoltage occurrences. To address these challenges, the study uses simulations to evaluate the effectiveness of conventional resistor-inductor-capacitor (RLC) filter in mitigating hazardous overvoltage resulting from transients. The proposed methodology entails using standard RLC filter to suppress transients and its associated overvoltage risks. Through a series of MATLAB/Simulink simulations, the research emphasizes the practical effectiveness of this technique. The study examines the impact of transients under varied operational scenarios, including no-load switching conditions, temporary short-circuits, and load on/off events. The primary aim of the article is to assess the viability of using an established technology to manage system instabilities upon the energization of a CCS under no-load circumstances or in case of a short-circuit fault occurring on the primary side of the CCS distribution transformer. The findings underscore the effectiveness of conventional RLC filters in suppressing transients induced by the CCS no-load switching.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50730006,50976053,and 50906042)
文摘Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metMlic nano-films, including the electron phonon coupling factor G, interfazial thermal resistance R, and thermal conductivity Ks of the substrate. The rear heating-front detecting (RF) method is used to ensure the femtosecond temporal resolution. An intense laser beam is focused on the rear surface to heat the film, and another weak laser beam is focused on the very spot of the front surface to detect the change in the electron temperature. By varying the optical path delay between the two beams, a complete electron temperature profile can be scanned. Different from the normally used single-layer model, the double-layer model involving interfaciM thermal resistance is studied here. The electron temperature cooling profile can be affected by the electron energy transfer into the substrate or the electron-phonon interactions in the metallic films. For multiple-target optimization, the genetic algorithm (GA) is used to obtain both G and R. The experimental result gives a deep understanding of the mechanism of ultra-fast heat transfer in metals.
基金Supported by the National Natural Science Foundation of China (50674093) the Project of Fujian Provincial Education Department (JA11098)
文摘Under the inflammable or explosive environment, the direct measurement methods by opening up the explo- sion-proof shell of electrical installations were not adopted. So, it's impossible to have a quantitative analysis on the limit of conducted disturbance for electrical fast transient burst (EFT/B) in such dangerous environments. Transient conducted coupling model, which using EFT/B as its excitation source, can be built based on circuit and electromagnetic field theory. Furthermore, numerical analysis was performed. The results indicate that the capacitive coupling voltage is the same polarity as EFT/B, and is the main disturbance form of conducted coupling in mines. The inductive coupling voltage is reversed polarity with the ca- pacitive coupling voltage, and both peaks appear only in the rising time of EFT/B, which increase with the rising of load resistance. Moreover, the cable coupling voltage on the side of disturbance source is higher than the one on the other side in tunnel. To reduce the common resistance can suppress the resistive coupling disturbance.
文摘The dynamical equations for a inertial reciprocating machine excited by two rotating eccentric weights were built by the matrix methodology for establishing dynamical equations of discrete systems. A mathematical model of electromechanical coupling system for the machine was formed by combining the dynamical equations with the state equations of the two motors. The computer simulation to the model was performed for several values of the damping coefficient or the motor power, respectively. The substance of transient behavior of the machine is unveiled by analyzing the results of the computer simulation, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior and engineering design of the equipment.
基金Supported by the National Basic Research Program of China("973"Program)(613002)
文摘The transient finite element technique is applied, and a transient heat conduction model of wet brake friction disk is established. For obtaining the accurate heat flow density mathematic model and avoiding possibly instable thermoelastic stress produced by the non uniform contact pressure of friction pair, a test method is applied to collect accurate contact pressure between the dual sheet steel and friction disk in the combining process. And then the heat-flow density and transient ther mo mechanical coupling simulation are analyzed. At the same time all possible boundary conditions are considered, such as the heat generation, heat conduction problem, relation between friction and contact, variation in load and heat change problem etc. The simulation results show that the me chanical model of thermo mechanical coupling can express well the dynamic characteristics of fric tion disk, and gives perfect reference for more study on thermoelastic distortion of brake friction pairs.
文摘A mathematical model of electromechanical coupling system for a planar inertial vibrating machine is built by setting up dynamical equations of discrete systems with a matrix methodology proposed. The substance of the transient behavior of the machine is unveiled by analyzing the results of the computer simulation to the model, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior of the equipment.
基金State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Grant/Award Number:EERI_KF2020008。
文摘Accurate calculation of short-circuit electromagnetic force is crucial for both mechanical strength check and the optimal design of gas-insulated transmission lines(GIL).Since the full 3D numerical simulation method is highly time-consuming,a novel lightweight 2D multi-slice electromagnetic field-circuit coupled method for computing transient electromagnetic force is proposed,where appropriate port voltage degrees of freedom(DoFs)are introduced for the solid GIL conductor terminals.When the transient magnetic field equations are combined with the constraint equations of circuit part,including nodal voltage and loop current DoFs,a direct field-circuit coupling scheme is thus derived.The proposed method can simultaneously consider the effect of interphaseshunts and ground wires,as well as the skin effect and proximity effect.It can accurately capture the transient electromagnetic characteristics of GIL spanning from several to tens of kilometers under different short-circuit conditions.The transient electromagnetic forces,as well as the induced voltages and currents of the enclosure,are analysed by the proposed method for both single-phase and three-phase enclosed GIL under various short-circuit conditions.The proposed method has the advantages of high accuracy and lightweight computational cost,and thus it is also suitable for conducting important simulation tasks such as mechanical strength checks during the design optimisation phase of long-distance GIL.
基金supported by the China Postdoctoral Science Foundation(No.2021M703045)the National Natural Science Foundation of China(No.12075067)the National Key R&D Program of China(No.2018YFE0180900).
文摘To perform nuclear reactor simulations in a more realistic manner,the coupling scheme between neutronics and thermal-hydraulics was implemented in the HNET program for both steady-state and transient conditions.For simplicity,efficiency,and robustness,the matrixfree Newton/Krylov(MFNK)method was applied to the steady-state coupling calculation.In addition,the optimal perturbation size was adopted to further improve the convergence behavior of the MFNK.For the transient coupling simulation,the operator splitting method with a staggered time mesh was utilized to balance the computational cost and accuracy.Finally,VERA Problem 6 with power and boron perturbation and the NEACRP transient benchmark were simulated for analysis.The numerical results show that the MFNK method can outperform Picard iteration in terms of both efficiency and robustness for a wide range of problems.Furthermore,the reasonable agreement between the simulation results and the reference results for the NEACRP transient benchmark verifies the capability of predicting the behavior of the nuclear reactor.
文摘We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams.Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time.The estimated range is between 5-8 ps for subluminal to superluminal light propagation.
文摘A transient delay-coupled network was proposed by modifying the standard delay-coupled network with a transient coupling technique to enlarge the synchronization domain of the network, where the synchronization domain is the interval of the coupling strength for which the network gets synchronized. The coupling of the transient delay-coupled network is activated when the systems are in a particular region (coupling region) of the phase space and inactivated otherwise, which is different from the standard coupling. The specific synchronization performance of the transient delay-coupled network was investigated through case studies. The relationships between the synchronization domain and the coupling region were obtained by gauging the synchronization index. It is understood that the synchronization domain changes in a non-smooth manner with the variation of the coupling region. In particular, the synchronization domain of a transient delay-coupled network is much larger than that of the standard delay-coupled network when the coupling region is appropriately determined.
文摘The thermal balance state of high-speed and heavy-load gear transmissionsystem has an important influence on the performance and failure of geartransmission and the design of gear lubrication system. Excessive surfacetemperature of gear teeth is the main cause of gluing failure of gear contactsurface. To investigate the gear heat distribution in meshing processand discuss the effect of thermal conduction on heat distribution,a finiteelement model of spur gear is presented in the paper which can representgeneral involute spur gears. And a simulation approach is use to calculategear heat distribution in meshing process. By comparing with theoreticalcalculation, the correctness of the simulation method is verified, and theheat distribution of spur gear under the condition of heat conduction isfurther analyzed. The difference between the calculation results with heatconduction and without heat conduction is compared. The research hascertain reference significance for dry gear hobbing and the same type ofthermal-structural coupling analysis.
文摘针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计算的有限元离散方程;其次,采用POD降阶算法改善传统瞬态计算中存在的条件数过大及方程阶数过高的问题;同时对于瞬态计算中的时间步长选择问题,提出适用于非线性问题的αATS变步长策略;然后,为验证方法的有效性,基于110 kV油浸式电力变压器绕组的基本结构建立二维八分区数值计算模型,同时将计算结果与基于110 kV绕组的温升实验结果进行对比。数值计算及实验结果表明,所提算法与全阶定步长算法在流场和温度场中的精度几乎相同,且流场计算效率提升约45倍,温度场计算效率提升约38倍,计算速度得到显著提高。这一点在温升实验中同样得到验证,说明该文所提算法的准确性、高效性及一定的工程实用性。