An analytical scheme on the initial transient process in a simple helical flux compression generator, which includes the distributions of both the magnetic field in the hollow of an armature and the conducting current...An analytical scheme on the initial transient process in a simple helical flux compression generator, which includes the distributions of both the magnetic field in the hollow of an armature and the conducting current density in the stator, is developed by means of a diffusion equation. A relationship between frequency of the conducting current, root of the characteristic function of Bessel equation and decay time in the armature is given. The skin depth in the helical stator is calculated and is compared with the approximate one which is widely used in the calculation of magnetic diffusion. Our analytical results are helpful to understanding the mechanism of the loss of magnetic flux in both the armature and stator and to suggesting an optimal design for improving performance of the helical flux compression generator.展开更多
Considering the same initial state error in each repetitive operation in the iterative learning system, a method of arranging the transient process is given. During the current iteration, the system will track the tra...Considering the same initial state error in each repetitive operation in the iterative learning system, a method of arranging the transient process is given. During the current iteration, the system will track the transient function firstly, and then the expected trajectory. After several iterations, the learning system output will trend to the arranged curve, which has avoided the effect of the initial error on the controller. Also the transient time can be changed as you need, which makes the designing simple and the operation easy. Then the detailed designing steps are given via the robot system. At last the simulation of the robot system is given, which shows the validity of the method.展开更多
The 1/3 sub-harmonic solution for the Duffing's with damping equation was investigated by using the methods of harmonic balance and numerical integration. The assumed solution is introduced, and the domain of sub-har...The 1/3 sub-harmonic solution for the Duffing's with damping equation was investigated by using the methods of harmonic balance and numerical integration. The assumed solution is introduced, and the domain of sub-harmonic frequencies was found. The asymptotical stability of the subharmonic resonances and the sensitivity of the amplitude responses to the variation of damping coefficient were examined. Then, the subharmonic resonances were analyzed by using the techniques from the general fractal theory. The analysis indicates that the sensitive dimensions of the system time-field responses show sensitivity to the conditions of changed initial perturbation, changed damping coefficient or the amplitude of excitation, thus the sensitive dimension can clearly describe the characteristic of the transient process of the subharmonic resonances.展开更多
The 1/3 subharmonic solution for the Duffing’s equation is investigated by using the methods of harmonic balance and numerical integration. The sensitivity of parameter variation for the transient process and the tra...The 1/3 subharmonic solution for the Duffing’s equation is investigated by using the methods of harmonic balance and numerical integration. The sensitivity of parameter variation for the transient process and the transient process for the perturbance initial conditions are studied. Over and above, the precision of numerical integration method is discussed and the numerical integration method is compared with the harmonic balance method. Finally, asymptotical stability of the pure subharmonic oscillations element is inspected.展开更多
This paper investigates the effect of carried-envelope phase on transient process in a cascade-type atomic system, which is driven by two ultrashort laser pulses (probe and signal laser). It is found that the one- a...This paper investigates the effect of carried-envelope phase on transient process in a cascade-type atomic system, which is driven by two ultrashort laser pulses (probe and signal laser). It is found that the one- and two-photon processes corresponding to pathway |0〉→|1〉and |0〉→|1〉→|2〉 can be enhanced or ,suppressed by modulating the carried-envelope phases of probe laser pulse. Our numerical results also show that the transient populations of two excited states can be periodically affected by the carried-envelope phase of probe laser pulse. With certain time, the partial population transfer between two exited states can be realized just by adjusting the carried-envelope phase of probe laser pulse.展开更多
By applying a nonlinear control and arranging a transient process, the initiative error of the pneumatic servo positioning system is reduced largely, and a larger gain of the controller is used to improve the respondi...By applying a nonlinear control and arranging a transient process, the initiative error of the pneumatic servo positioning system is reduced largely, and a larger gain of the controller is used to improve the responding speed of the system at the same damping ratio. Therefore, a compromise is made among the responding speed, overshoot, robustness, adaptability and stability. In addition, a dynamic output feedback controller, including position velocity and acceleration (PVA) feedback, is designed to improve the performance of the system. And a nonlinear controller is reconstructed based on the linear output feedback controller to decrease noises and disturbances. The dynamic responses of the system are simulated and tested. Results show that the error is kept within 0.02 mm under different mass loads and the positioning transient process is smooth, without overshoot and speedy.展开更多
A mathematical model for analysing transient process of AC silent discharge isestablished from its physical model.Then,the breakdown characteristics and the dependence ofdischarge current density on time are calculate...A mathematical model for analysing transient process of AC silent discharge isestablished from its physical model.Then,the breakdown characteristics and the dependence ofdischarge current density on time are calculated theoretically in this kind of AC silent discharge.They are compared with the experimental results and the deviation between the theoretical andexperimental results are discussed briefly.展开更多
We study the effects of mechanical nonlinearity arising from large thickness-shear deformation on the transient process of an AT-cut quartz plate resonator. Mindlin's two-dimensional plate equation is used, from whic...We study the effects of mechanical nonlinearity arising from large thickness-shear deformation on the transient process of an AT-cut quartz plate resonator. Mindlin's two-dimensional plate equation is used, from which a system of first-order nonlinear differential equations governing the evolution of the vibration amplitude is obtained. Numerical solutions by the Runge-Kutta method show that in common operating conditions of quartz resonators the nonlinear effect varies from noticeable to significant. As resonators are to be made smaller and thinner in the future with about the same power requirement, nonlinear effects will become more important and need more understanding and consideration in resonator design.展开更多
The adjustment and the regeneration of the flow field unstructuredmesh as well as the fi- nitelement solutions for the Euler equationsin the transient process of the separation o external stores form anaircraft at a p...The adjustment and the regeneration of the flow field unstructuredmesh as well as the fi- nitelement solutions for the Euler equationsin the transient process of the separation o external stores form anaircraft at a predetermined downward translation and rotation areinvestigated. It is shown that the adjustment or regeneration ofgrids needed for moving store can be confined within a small regionaround the store and the finite element numerical solution method ofEuler equations for fixed grids can also be used for moving grids ifthe conservative fluxes F_k of fixed grids are replaced by E_k ofmoving grids. The relation-ships between F_k and E_k are alsoestablished. The numerical results For practical examples of aircraftwith external stores are shown.展开更多
The annealing time is an important affecting factor in the performance of many furnaces.The present work deals with the transient simulation of annealing process in a cubic furnace in which a solid element is placed i...The annealing time is an important affecting factor in the performance of many furnaces.The present work deals with the transient simulation of annealing process in a cubic furnace in which a solid element is placed in its center.As the working gas can have some radiating features,a set of governing equations including the energy balance with the radiative transfer equation(RTE)for the gray radiating medium and the conduction equation inside the solid product are numerically solved with progressing in time.Numerical results which are validated against both analytical and theoretical findings in the literature demonstrate that during the starting period,a high rate of radiant energy transfers into the solid body even at small optical thickness.This behavior which hastens the rate of heat transfer at low values of the radiation conduction parameter,causes a fast annealing process in which the solid body warms up to its maximum temperature.Moreover,it is revealed that the rate of heat transfer is an increasing function of radiation-conduction parameter.展开更多
With permanent down-hole gauges (PDGs) widely installed in oilfields around the world in recent years, a continuous stream of transient pressure data in real time is now available, which motivates a new round of res...With permanent down-hole gauges (PDGs) widely installed in oilfields around the world in recent years, a continuous stream of transient pressure data in real time is now available, which motivates a new round of research interests in further developing pressure transient processing and analysis techniques. Transient pressure measurements from PDG are characterized by long term and high volume data. These data are recorded under unconstrained circumstances, so effects due to noise, rate fluctuation and interference from other wells cannot be avoided. These effects make the measured pressure trends decline or rise and then obscure or distort the actual flow behavior, which makes subsequent analysis difficult. In this paper, the problems encountered in analysis of PDG transient pressure are investigated. A newly developed workflow for processing and analyzing PDG transient pressure data is proposed. Numerical well testing synthetic studies are performed to demonstrate these procedures. The results prove that this new technique works well and the potential for practical application looks very promising.展开更多
In this study, a two-step heating process is introduced for transient liquid phase ( TLP) diffusion bonding fo r sound joints with T91 heat resistant steels. At first, a short-time higher temperature heatin...In this study, a two-step heating process is introduced for transient liquid phase ( TLP) diffusion bonding fo r sound joints with T91 heat resistant steels. At first, a short-time higher temperature heating step is addressed to melt the interlayer, followed by the second step to complete isothermal solidification at a low temperature. The most critical feature of our new method is producing a non-planar interface at the T9/ heat resistant steels joint. We propose a transitional liquid phase bonding of T91 heat resistant steels by this approach. Since joint microstructures have been studied, we tested the tensile strength to assess joint mechanical property. The result indicates that the solidified bond may contain a primary solid-solution, similar composition to the parent metal and free from precipitates. Joint tensile strength of the joint is not lower than parent materials. Joint bend's strengths are enhanced due to the higher metal-to-metal junction producing a non-planar bond lines. Nevertheless, the traditional transient liquid phase diffusion bonding produces planar ones. Bonding parameters of new process are 1 260 °C for 0. 5 min and 1 230 °C fo r 4 min.展开更多
In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its in...In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.展开更多
To analyze the effect of blade number on the performance of hydraulic turbines during the transient stage in which theflow rate is not constant,six hydraulic turbines with different blade numbers are considered.The ins...To analyze the effect of blade number on the performance of hydraulic turbines during the transient stage in which theflow rate is not constant,six hydraulic turbines with different blade numbers are considered.The instantaneous hydraulic performance of the turbine and the pressure pulsation acting on the impeller are investigated numerically by using the ANSYS CFX software.The ensuing results are compared with the outcomes of experimental tests.It is shown that thefluctuation range of the pressure coefficient increases with time,but the corresponding range for the transient hydraulic efficiency decreases gradually when theflow velocity transits to larger values.During the transition to smallflow velocity,thefluctuation range of the pressure coefficient gradually decreases as time passes,but the correspondingfluctuation range of its transient hydraulic efficiency gradually becomes larger.Thefluctuation range in the Z9 case is small during the transition.The main frequency of transient hydraulic efficiency pulsation is equal to the blade frequency.At the main frequency,Z7 has the largest amplitude of the hydraulic efficiency pulsation,Z10 has the smallest amplitude,and the difference between Z7 and Z9 is limited.As the number of blades grows,the pressure pulsation during the transition process gradually decreases,but the pressure pulsation of Z10 at the volute tongue is larger.In the steady state,Z9 has the highest efficiency and in the transient stage,the pressure coefficientfluctuation range is small.Accordingly,for the hydraulic turbine Z9,the performance is optimal.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 0475012) and partially by Technology & Science Foundation of China Academy of Engineering & Physics (Grant No 20040210).
文摘An analytical scheme on the initial transient process in a simple helical flux compression generator, which includes the distributions of both the magnetic field in the hollow of an armature and the conducting current density in the stator, is developed by means of a diffusion equation. A relationship between frequency of the conducting current, root of the characteristic function of Bessel equation and decay time in the armature is given. The skin depth in the helical stator is calculated and is compared with the approximate one which is widely used in the calculation of magnetic diffusion. Our analytical results are helpful to understanding the mechanism of the loss of magnetic flux in both the armature and stator and to suggesting an optimal design for improving performance of the helical flux compression generator.
文摘Considering the same initial state error in each repetitive operation in the iterative learning system, a method of arranging the transient process is given. During the current iteration, the system will track the transient function firstly, and then the expected trajectory. After several iterations, the learning system output will trend to the arranged curve, which has avoided the effect of the initial error on the controller. Also the transient time can be changed as you need, which makes the designing simple and the operation easy. Then the detailed designing steps are given via the robot system. At last the simulation of the robot system is given, which shows the validity of the method.
基金Project supported by the National Natural Science Foundation of China (No.50275024)
文摘The 1/3 sub-harmonic solution for the Duffing's with damping equation was investigated by using the methods of harmonic balance and numerical integration. The assumed solution is introduced, and the domain of sub-harmonic frequencies was found. The asymptotical stability of the subharmonic resonances and the sensitivity of the amplitude responses to the variation of damping coefficient were examined. Then, the subharmonic resonances were analyzed by using the techniques from the general fractal theory. The analysis indicates that the sensitive dimensions of the system time-field responses show sensitivity to the conditions of changed initial perturbation, changed damping coefficient or the amplitude of excitation, thus the sensitive dimension can clearly describe the characteristic of the transient process of the subharmonic resonances.
文摘The 1/3 subharmonic solution for the Duffing’s equation is investigated by using the methods of harmonic balance and numerical integration. The sensitivity of parameter variation for the transient process and the transient process for the perturbance initial conditions are studied. Over and above, the precision of numerical integration method is discussed and the numerical integration method is compared with the harmonic balance method. Finally, asymptotical stability of the pure subharmonic oscillations element is inspected.
文摘This paper investigates the effect of carried-envelope phase on transient process in a cascade-type atomic system, which is driven by two ultrashort laser pulses (probe and signal laser). It is found that the one- and two-photon processes corresponding to pathway |0〉→|1〉and |0〉→|1〉→|2〉 can be enhanced or ,suppressed by modulating the carried-envelope phases of probe laser pulse. Our numerical results also show that the transient populations of two excited states can be periodically affected by the carried-envelope phase of probe laser pulse. With certain time, the partial population transfer between two exited states can be realized just by adjusting the carried-envelope phase of probe laser pulse.
基金The National Natural Science Foundation of China (No.50085002)
文摘By applying a nonlinear control and arranging a transient process, the initiative error of the pneumatic servo positioning system is reduced largely, and a larger gain of the controller is used to improve the responding speed of the system at the same damping ratio. Therefore, a compromise is made among the responding speed, overshoot, robustness, adaptability and stability. In addition, a dynamic output feedback controller, including position velocity and acceleration (PVA) feedback, is designed to improve the performance of the system. And a nonlinear controller is reconstructed based on the linear output feedback controller to decrease noises and disturbances. The dynamic responses of the system are simulated and tested. Results show that the error is kept within 0.02 mm under different mass loads and the positioning transient process is smooth, without overshoot and speedy.
基金Supported by National Natural Science Foundation of China
文摘A mathematical model for analysing transient process of AC silent discharge isestablished from its physical model.Then,the breakdown characteristics and the dependence ofdischarge current density on time are calculated theoretically in this kind of AC silent discharge.They are compared with the experimental results and the deviation between the theoretical andexperimental results are discussed briefly.
基金supported by the Program for New Century Excellent Talents in Universities(No.NCET-12-0625)the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.SBK2014010134)+2 种基金the Fundamental Research Funds for Central Universities(No.NE2013101)the National Natural Science Foundation of China(No.11232007)a project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘We study the effects of mechanical nonlinearity arising from large thickness-shear deformation on the transient process of an AT-cut quartz plate resonator. Mindlin's two-dimensional plate equation is used, from which a system of first-order nonlinear differential equations governing the evolution of the vibration amplitude is obtained. Numerical solutions by the Runge-Kutta method show that in common operating conditions of quartz resonators the nonlinear effect varies from noticeable to significant. As resonators are to be made smaller and thinner in the future with about the same power requirement, nonlinear effects will become more important and need more understanding and consideration in resonator design.
文摘The adjustment and the regeneration of the flow field unstructuredmesh as well as the fi- nitelement solutions for the Euler equationsin the transient process of the separation o external stores form anaircraft at a predetermined downward translation and rotation areinvestigated. It is shown that the adjustment or regeneration ofgrids needed for moving store can be confined within a small regionaround the store and the finite element numerical solution method ofEuler equations for fixed grids can also be used for moving grids ifthe conservative fluxes F_k of fixed grids are replaced by E_k ofmoving grids. The relation-ships between F_k and E_k are alsoestablished. The numerical results For practical examples of aircraftwith external stores are shown.
文摘The annealing time is an important affecting factor in the performance of many furnaces.The present work deals with the transient simulation of annealing process in a cubic furnace in which a solid element is placed in its center.As the working gas can have some radiating features,a set of governing equations including the energy balance with the radiative transfer equation(RTE)for the gray radiating medium and the conduction equation inside the solid product are numerically solved with progressing in time.Numerical results which are validated against both analytical and theoretical findings in the literature demonstrate that during the starting period,a high rate of radiant energy transfers into the solid body even at small optical thickness.This behavior which hastens the rate of heat transfer at low values of the radiation conduction parameter,causes a fast annealing process in which the solid body warms up to its maximum temperature.Moreover,it is revealed that the rate of heat transfer is an increasing function of radiation-conduction parameter.
基金Science Foundation of China University of Petroleum, Beijing (No.YJRC-2011-02)for the financial support during this research
文摘With permanent down-hole gauges (PDGs) widely installed in oilfields around the world in recent years, a continuous stream of transient pressure data in real time is now available, which motivates a new round of research interests in further developing pressure transient processing and analysis techniques. Transient pressure measurements from PDG are characterized by long term and high volume data. These data are recorded under unconstrained circumstances, so effects due to noise, rate fluctuation and interference from other wells cannot be avoided. These effects make the measured pressure trends decline or rise and then obscure or distort the actual flow behavior, which makes subsequent analysis difficult. In this paper, the problems encountered in analysis of PDG transient pressure are investigated. A newly developed workflow for processing and analyzing PDG transient pressure data is proposed. Numerical well testing synthetic studies are performed to demonstrate these procedures. The results prove that this new technique works well and the potential for practical application looks very promising.
基金supported by the Natural Science Foundation of Henan Province(Grant No.152107000047)
文摘In this study, a two-step heating process is introduced for transient liquid phase ( TLP) diffusion bonding fo r sound joints with T91 heat resistant steels. At first, a short-time higher temperature heating step is addressed to melt the interlayer, followed by the second step to complete isothermal solidification at a low temperature. The most critical feature of our new method is producing a non-planar interface at the T9/ heat resistant steels joint. We propose a transitional liquid phase bonding of T91 heat resistant steels by this approach. Since joint microstructures have been studied, we tested the tensile strength to assess joint mechanical property. The result indicates that the solidified bond may contain a primary solid-solution, similar composition to the parent metal and free from precipitates. Joint tensile strength of the joint is not lower than parent materials. Joint bend's strengths are enhanced due to the higher metal-to-metal junction producing a non-planar bond lines. Nevertheless, the traditional transient liquid phase diffusion bonding produces planar ones. Bonding parameters of new process are 1 260 °C for 0. 5 min and 1 230 °C fo r 4 min.
基金supported by the Australian Research Council(Grant No.DP200101293)supported by the UWA-China Joint Scholarships(201906430030).
文摘In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.
基金The authors would like to thank the support of the Gansu Provincial Department of Education College Teachers’Innovation Fund Project(2024A-021)Colleges and Universities Industrial Support Program Projects of Gansu Province(Grant No.2020C-20)Key Laboratory of Fluid and Power Machinery,Ministry of Education,Xihua University(Grant No.szjj2019-016,LTDL2020-007).
文摘To analyze the effect of blade number on the performance of hydraulic turbines during the transient stage in which theflow rate is not constant,six hydraulic turbines with different blade numbers are considered.The instantaneous hydraulic performance of the turbine and the pressure pulsation acting on the impeller are investigated numerically by using the ANSYS CFX software.The ensuing results are compared with the outcomes of experimental tests.It is shown that thefluctuation range of the pressure coefficient increases with time,but the corresponding range for the transient hydraulic efficiency decreases gradually when theflow velocity transits to larger values.During the transition to smallflow velocity,thefluctuation range of the pressure coefficient gradually decreases as time passes,but the correspondingfluctuation range of its transient hydraulic efficiency gradually becomes larger.Thefluctuation range in the Z9 case is small during the transition.The main frequency of transient hydraulic efficiency pulsation is equal to the blade frequency.At the main frequency,Z7 has the largest amplitude of the hydraulic efficiency pulsation,Z10 has the smallest amplitude,and the difference between Z7 and Z9 is limited.As the number of blades grows,the pressure pulsation during the transition process gradually decreases,but the pressure pulsation of Z10 at the volute tongue is larger.In the steady state,Z9 has the highest efficiency and in the transient stage,the pressure coefficientfluctuation range is small.Accordingly,for the hydraulic turbine Z9,the performance is optimal.