A phenomenological model for dispersed systems which exhibit complex theological behaviour such as shear and time-dependent viscosity, yield stress, and elasticity is proposed. The model extends the Quemeda model to d...A phenomenological model for dispersed systems which exhibit complex theological behaviour such as shear and time-dependent viscosity, yield stress, and elasticity is proposed. The model extends the Quemeda model to describe the viscosity function with a structural parameter λ which varies according to differ- ent kinetic orders of particle aggregation and segregation. The transient stress response is obtained by solving an instantaneous Maxwell model with an assumed shear modulus function G of the same form as the viscosity function η. Accuracy of the proposed model is verified experimentally with the results obtained for two oil (creosote)/water emulsions. The model that gives the best fit of experimental data appears to be the one with kinetic orders n = m = 2.展开更多
A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space eq...A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space equation formulation. This work presents a somewhat simplified set of equations to <span style="font-family:Verdana;">one previously given by one of the authors. To demonstrate application of the general formulation, the frequency responses of switched networks used as</span><span style="font-family:Verdana;"> PWM DC-to-DC converters operating in continuous conduction mode (CCM) under voltage mode control are derived. (The accompanying paper, Part II, will present results for converters operating in discontinuous conduction mode (DCM)). From the general sets of equations developed here, both the control to output and input source variation to output frequency responses are derived. The describing function approach enables exact frequency response determination, even at high frequencies where the accuracy using average models may be compromised. Confirmation of the accuracy of the derived models is provided by comparing the responses with those obtained using the commercial simulator PSIM on a PWM boost converter. The magnitude and phase responses are shown to match perfectly over the full range of frequencies up to close to half the switching frequency. Matlab code that implements the models is given such that the user can easily adapt for use with other PWM converter topologies.</span>展开更多
This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified...This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified and updated. The models assume a piecewise linear state space equation description of the system and results in a closed form solution for the sought after frequency response. In Part I, model derivation was demonstrated for the case of PWM converters operating in the continuous conduction mode (CCM). This operating mode does not feature any state dependent switching times. In this paper, Part II, frequency response models for any transfer function for PWM converters operating in discontinuous conduction mode (DCM) are derived based on the theory presented in Part I. This operating model features state dependent switching times. The describing function models developed are exact and therefore, in terms of accuracy, are to be preferred over averaged models which are widely used. The example of a boost dc-to-dc converter operating in DCM is simulated to obtain the control to output and input to output frequency responses and are compared with the models derived here. Excellent agreement between the simulated and model responses was found. Matlab code implementing the analytical models is also presented which the user can adapt for any other PWM converter topology. The models derived here may be used as a basis from which simplified models may be derived while still preserving required accuracy.展开更多
This paper presents an analysis of the dynamic response of a low pressure proton exchange membrane (PEM) fuel cell stack to step changes in load, which are charactedstic of automotive fuel cell system applications. ...This paper presents an analysis of the dynamic response of a low pressure proton exchange membrane (PEM) fuel cell stack to step changes in load, which are charactedstic of automotive fuel cell system applications. The goal is a better understanding of the electrical and electrochemical processes when accounting for the characteristic cell voltage response during transients. The analysis and expedment are based on a low pressure 5 kW proton exchange membrane fuel cell (PEMFC) stack, which is similar to those used in several of Tsinghua's fuel cell buses. The experimental results provide an effective improvement reference for the power train control scheme of the fuel cell buses in Olympic demonstration in Beijing 2008.展开更多
In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the sy...In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation.展开更多
This paper presents a mathematical model to calculate transients in grounding systems. The derived equations arise from direct application of basic electromagnetic equations in frequency domain, whose solution is obta...This paper presents a mathematical model to calculate transients in grounding systems. The derived equations arise from direct application of basic electromagnetic equations in frequency domain, whose solution is obtained by the application of the Moment Methods. A formulation based on experimental measurements is applied to quantify the soil parameters for each frequency. The unified approach is applied in the calculation of the grounding impedance of horizontal electrodes. Results show that the inclusion of frequency dependence of the soil parameters leads to a reduction of the values of grounding impedance, in comparison with results for soils with parameters independent of frequency.展开更多
建立准确的静止无功发生器(static var generators,SVG)白盒电磁暂态仿真模型是分析电网电压稳定特性的前提。然而,由于SVG的控制器结构和参数保密,其建模大都基于典型控制结构和参数,模型的暂态输出特性与实际差异较大。针对上述问题,...建立准确的静止无功发生器(static var generators,SVG)白盒电磁暂态仿真模型是分析电网电压稳定特性的前提。然而,由于SVG的控制器结构和参数保密,其建模大都基于典型控制结构和参数,模型的暂态输出特性与实际差异较大。针对上述问题,提出了基于SVG厂家封装黑盒模型故障穿越(fault ride-through,FRT)演化特性的电磁暂态模型测辨方法。首先,分析了厂家黑盒模型的拓扑特征,通过多工况故障穿越响应测试,厘清了其故障穿越演化特性。然后,通过分析不同控制环节暂态切换过程对SVG故障穿越响应特性的影响和作用途径,提出了基于SVG故障穿越响应演化形态的控制器结构辨识方法。通过分析SVG不同控制环节参数对其故障穿越响应特性的分阶段作用原理,提出了基于故障穿越响应幅值的控制器参数分步辨识方法,形成了SVG的白盒化电磁暂态模型测辨方法体系。最后,将建立的不同型号白盒仿真模型与对应厂家黑盒模型进行了故障穿越响应特性对比分析,发现其误差远小于现行标准的允许误差,证明了提出方法的有效性和通用性。展开更多
文摘A phenomenological model for dispersed systems which exhibit complex theological behaviour such as shear and time-dependent viscosity, yield stress, and elasticity is proposed. The model extends the Quemeda model to describe the viscosity function with a structural parameter λ which varies according to differ- ent kinetic orders of particle aggregation and segregation. The transient stress response is obtained by solving an instantaneous Maxwell model with an assumed shear modulus function G of the same form as the viscosity function η. Accuracy of the proposed model is verified experimentally with the results obtained for two oil (creosote)/water emulsions. The model that gives the best fit of experimental data appears to be the one with kinetic orders n = m = 2.
文摘A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space equation formulation. This work presents a somewhat simplified set of equations to <span style="font-family:Verdana;">one previously given by one of the authors. To demonstrate application of the general formulation, the frequency responses of switched networks used as</span><span style="font-family:Verdana;"> PWM DC-to-DC converters operating in continuous conduction mode (CCM) under voltage mode control are derived. (The accompanying paper, Part II, will present results for converters operating in discontinuous conduction mode (DCM)). From the general sets of equations developed here, both the control to output and input source variation to output frequency responses are derived. The describing function approach enables exact frequency response determination, even at high frequencies where the accuracy using average models may be compromised. Confirmation of the accuracy of the derived models is provided by comparing the responses with those obtained using the commercial simulator PSIM on a PWM boost converter. The magnitude and phase responses are shown to match perfectly over the full range of frequencies up to close to half the switching frequency. Matlab code that implements the models is given such that the user can easily adapt for use with other PWM converter topologies.</span>
文摘This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified and updated. The models assume a piecewise linear state space equation description of the system and results in a closed form solution for the sought after frequency response. In Part I, model derivation was demonstrated for the case of PWM converters operating in the continuous conduction mode (CCM). This operating mode does not feature any state dependent switching times. In this paper, Part II, frequency response models for any transfer function for PWM converters operating in discontinuous conduction mode (DCM) are derived based on the theory presented in Part I. This operating model features state dependent switching times. The describing function models developed are exact and therefore, in terms of accuracy, are to be preferred over averaged models which are widely used. The example of a boost dc-to-dc converter operating in DCM is simulated to obtain the control to output and input to output frequency responses and are compared with the models derived here. Excellent agreement between the simulated and model responses was found. Matlab code implementing the analytical models is also presented which the user can adapt for any other PWM converter topology. The models derived here may be used as a basis from which simplified models may be derived while still preserving required accuracy.
基金Supported by the National High-Tech Research and Development (863) Program of China (No.2006AA11A102)
文摘This paper presents an analysis of the dynamic response of a low pressure proton exchange membrane (PEM) fuel cell stack to step changes in load, which are charactedstic of automotive fuel cell system applications. The goal is a better understanding of the electrical and electrochemical processes when accounting for the characteristic cell voltage response during transients. The analysis and expedment are based on a low pressure 5 kW proton exchange membrane fuel cell (PEMFC) stack, which is similar to those used in several of Tsinghua's fuel cell buses. The experimental results provide an effective improvement reference for the power train control scheme of the fuel cell buses in Olympic demonstration in Beijing 2008.
文摘In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation.
基金financial support provided by Energetic Company of Minas Gerais(CE-MIG)
文摘This paper presents a mathematical model to calculate transients in grounding systems. The derived equations arise from direct application of basic electromagnetic equations in frequency domain, whose solution is obtained by the application of the Moment Methods. A formulation based on experimental measurements is applied to quantify the soil parameters for each frequency. The unified approach is applied in the calculation of the grounding impedance of horizontal electrodes. Results show that the inclusion of frequency dependence of the soil parameters leads to a reduction of the values of grounding impedance, in comparison with results for soils with parameters independent of frequency.
文摘建立准确的静止无功发生器(static var generators,SVG)白盒电磁暂态仿真模型是分析电网电压稳定特性的前提。然而,由于SVG的控制器结构和参数保密,其建模大都基于典型控制结构和参数,模型的暂态输出特性与实际差异较大。针对上述问题,提出了基于SVG厂家封装黑盒模型故障穿越(fault ride-through,FRT)演化特性的电磁暂态模型测辨方法。首先,分析了厂家黑盒模型的拓扑特征,通过多工况故障穿越响应测试,厘清了其故障穿越演化特性。然后,通过分析不同控制环节暂态切换过程对SVG故障穿越响应特性的影响和作用途径,提出了基于SVG故障穿越响应演化形态的控制器结构辨识方法。通过分析SVG不同控制环节参数对其故障穿越响应特性的分阶段作用原理,提出了基于故障穿越响应幅值的控制器参数分步辨识方法,形成了SVG的白盒化电磁暂态模型测辨方法体系。最后,将建立的不同型号白盒仿真模型与对应厂家黑盒模型进行了故障穿越响应特性对比分析,发现其误差远小于现行标准的允许误差,证明了提出方法的有效性和通用性。