BACKGROUND Early prediction of transient ischemic attack (TIA) has important clinical value. To date, systematic studies on clinical, biochemical, and imaging indicators related to carotid atherosclerosis have been ca...BACKGROUND Early prediction of transient ischemic attack (TIA) has important clinical value. To date, systematic studies on clinical, biochemical, and imaging indicators related to carotid atherosclerosis have been carried out to predict the occurrence of TIA. However, their prediction accuracy is limited. AIM To explore the role of combining wall shear stress (WSS) with conventional predictive indicators in improving the accuracy of TIA prediction. METHODS A total of 250 patients with atherosclerosis who underwent carotid ultrasonography at Naval Military Medical University Affiliated Gongli Hospital were recruited. Plaque location, plaque properties, stenosis rate, peak systolic velocity, and end diastolic velocity were measured and recorded. The WSS distribution map of the proximal and distal ends of the plaque shoulder was drawn using the shear stress quantitative analysis software, and the average values of WSS were recorded. The laboratory indicators of the subjects were recorded. The patients were followed for 4 years. Patients with TIA were included in a TIA group and the remaining patients were included in a control group. The clinical data, laboratory indicators, and ultrasound characteristics of the two groups were analyzed. Survival curves were plotted by the Kaplan-Meier method. Receiver operating characteristic curves were established to evaluate the accuracy of potential indicators in predicting TIA. Logistic regression model was used to establish combined prediction, and the accuracy of combined predictive indicators for TIA was explored.RESULTS The intraclass correlation coefficients of the WSS between the proximal and distal ends of the plaque shoulder were 0.976 and 0.993, respectively, which indicated an excellent agreement. At the end of the follow-up, 30 patients suffered TIA (TIA group) and 204 patients did not (control group). Hypertension (P = 0.037), diabetes (P = 0.026), homocysteine (Hcy)(P = 0.022), fasting blood glucose (P = 0.034), plaque properties (P = 0.000), luminal stenosis rate (P = 0.000), and proximal end WSS (P = 0.000) were independent influencing factors for TIA during follow-up. The accuracy of each indicator for predicting TIA individually was not high (area under the curve [AUC]< 0.9). The accuracy of the combined indicator including WSS (AUC = 0.944) was significantly higher than that of the combined indicator without WSS (AUC = 0.856) in predicting TIA (z = 2.177, P = 0.030). The sensitivity and specificity of the combined indicator including WSS were 86.67% and 92.16%, respectively. CONCLUSION WSS at plaque surface combined with hypertension, diabetes, Hcy, blood glucose, plaque properties, and stenosis rate can significantly improve the accuracy of predicting TIA.展开更多
A phenomenological model for dispersed systems which exhibit complex theological behaviour such as shear and time-dependent viscosity, yield stress, and elasticity is proposed. The model extends the Quemeda model to d...A phenomenological model for dispersed systems which exhibit complex theological behaviour such as shear and time-dependent viscosity, yield stress, and elasticity is proposed. The model extends the Quemeda model to describe the viscosity function with a structural parameter λ which varies according to differ- ent kinetic orders of particle aggregation and segregation. The transient stress response is obtained by solving an instantaneous Maxwell model with an assumed shear modulus function G of the same form as the viscosity function η. Accuracy of the proposed model is verified experimentally with the results obtained for two oil (creosote)/water emulsions. The model that gives the best fit of experimental data appears to be the one with kinetic orders n = m = 2.展开更多
A mathematical model is presented for transient flow in a rapidly filling pipeline with an entrapped air pocket. The influence of transient shear stress between the pipe wall and the flowing fluid is taken into accoun...A mathematical model is presented for transient flow in a rapidly filling pipeline with an entrapped air pocket. The influence of transient shear stress between the pipe wall and the flowing fluid is taken into account. A coordinate transformation technique is employed to generate adaptive moving meshes for the multiphase flow system as images of the time-independent computational meshes in auxiliary domains. The method of characteristics is used to reduce the coupled nonlinear hyperbolic partial differential equations governing the motion of the filling fluid, entrapped air, and blocking fluid to ordinary differential equations. Numerical solution of resulting equations shows that the transient shear stresses have only a small damping effect on the pressure fluctuations. The peak pressure in the entrapped air pocket decreases significantly with increasing initial entrapped air volume, but decreases slightly with increasing initial entrapped air pressure.展开更多
基金Supported by Shanghai Health and Family Planning Commission,No.201440051Shanghai Pudong New Area Health and Family Planning Commission,No.PW2016A-19
文摘BACKGROUND Early prediction of transient ischemic attack (TIA) has important clinical value. To date, systematic studies on clinical, biochemical, and imaging indicators related to carotid atherosclerosis have been carried out to predict the occurrence of TIA. However, their prediction accuracy is limited. AIM To explore the role of combining wall shear stress (WSS) with conventional predictive indicators in improving the accuracy of TIA prediction. METHODS A total of 250 patients with atherosclerosis who underwent carotid ultrasonography at Naval Military Medical University Affiliated Gongli Hospital were recruited. Plaque location, plaque properties, stenosis rate, peak systolic velocity, and end diastolic velocity were measured and recorded. The WSS distribution map of the proximal and distal ends of the plaque shoulder was drawn using the shear stress quantitative analysis software, and the average values of WSS were recorded. The laboratory indicators of the subjects were recorded. The patients were followed for 4 years. Patients with TIA were included in a TIA group and the remaining patients were included in a control group. The clinical data, laboratory indicators, and ultrasound characteristics of the two groups were analyzed. Survival curves were plotted by the Kaplan-Meier method. Receiver operating characteristic curves were established to evaluate the accuracy of potential indicators in predicting TIA. Logistic regression model was used to establish combined prediction, and the accuracy of combined predictive indicators for TIA was explored.RESULTS The intraclass correlation coefficients of the WSS between the proximal and distal ends of the plaque shoulder were 0.976 and 0.993, respectively, which indicated an excellent agreement. At the end of the follow-up, 30 patients suffered TIA (TIA group) and 204 patients did not (control group). Hypertension (P = 0.037), diabetes (P = 0.026), homocysteine (Hcy)(P = 0.022), fasting blood glucose (P = 0.034), plaque properties (P = 0.000), luminal stenosis rate (P = 0.000), and proximal end WSS (P = 0.000) were independent influencing factors for TIA during follow-up. The accuracy of each indicator for predicting TIA individually was not high (area under the curve [AUC]< 0.9). The accuracy of the combined indicator including WSS (AUC = 0.944) was significantly higher than that of the combined indicator without WSS (AUC = 0.856) in predicting TIA (z = 2.177, P = 0.030). The sensitivity and specificity of the combined indicator including WSS were 86.67% and 92.16%, respectively. CONCLUSION WSS at plaque surface combined with hypertension, diabetes, Hcy, blood glucose, plaque properties, and stenosis rate can significantly improve the accuracy of predicting TIA.
文摘A phenomenological model for dispersed systems which exhibit complex theological behaviour such as shear and time-dependent viscosity, yield stress, and elasticity is proposed. The model extends the Quemeda model to describe the viscosity function with a structural parameter λ which varies according to differ- ent kinetic orders of particle aggregation and segregation. The transient stress response is obtained by solving an instantaneous Maxwell model with an assumed shear modulus function G of the same form as the viscosity function η. Accuracy of the proposed model is verified experimentally with the results obtained for two oil (creosote)/water emulsions. The model that gives the best fit of experimental data appears to be the one with kinetic orders n = m = 2.
文摘A mathematical model is presented for transient flow in a rapidly filling pipeline with an entrapped air pocket. The influence of transient shear stress between the pipe wall and the flowing fluid is taken into account. A coordinate transformation technique is employed to generate adaptive moving meshes for the multiphase flow system as images of the time-independent computational meshes in auxiliary domains. The method of characteristics is used to reduce the coupled nonlinear hyperbolic partial differential equations governing the motion of the filling fluid, entrapped air, and blocking fluid to ordinary differential equations. Numerical solution of resulting equations shows that the transient shear stresses have only a small damping effect on the pressure fluctuations. The peak pressure in the entrapped air pocket decreases significantly with increasing initial entrapped air volume, but decreases slightly with increasing initial entrapped air pressure.