The solar transition region (TR) is the temperature regime from roughly 0.02 MK to 0.8 MK in the solar atmosphere. It is the transition layer from the collisional and partially ionized chromosphere to the collisionl...The solar transition region (TR) is the temperature regime from roughly 0.02 MK to 0.8 MK in the solar atmosphere. It is the transition layer from the collisional and partially ionized chromosphere to the collisionless and fully ionized corona. The TR plays an important role in the mass and energy transport in both the quiet solar atmosphere and solar eruptions. Most of the TR emission lines fall into the spectral range of far ultraviolet and extreme ultraviolet (~400/^-1600/~). Imaging and spec- troscopic observations in this spectral range are the most important ways to obtain information about the physics of the TR. Static solar atmosphere models predict a very thin TR. However, recent high- resolution observations indicate that the TR is highly dynamic and inhomogeneous. I will summarize some major findings about the TR made through imaging and spectroscopic observations in the past 20 years. These existing observations have demonstrated that the TR may be the key to understanding coronal heating and origin of the solar wind. Future exploration of the solar TR may need to focus on the upper TR, since the plasma in this temperature regime (0.1 MK-0.8 MK) has not been routinely imaged before. High-resolution imaging and spectroscopic observations of the upper TR will not only allow us to track the mass and energy from the lower atmosphere to the corona, but also help us to understand the initiation and heating mechanisms of coronal mass ejections and solar flares.展开更多
Non-iterative analysis of indentation results allows for the detection of phase transitions under load and their transition energy. The closed algebraic equations have been deduced on the basis of the physically found...Non-iterative analysis of indentation results allows for the detection of phase transitions under load and their transition energy. The closed algebraic equations have been deduced on the basis of the physically founded normal force ?depth3/2 relation. The precise transition onset position is obtained by linear regression of the FN = kh3/2 plot, where k is the penetration resistance, which also provides the axis cuts of both polymorphs of first order phase transitions. The phase changes can be endothermic or exothermic. They are normalized per μN or mN normal load. The analyses of indentation loading curves with self-similar diamond indenters are used as validity check of the loading curves, also from calibration standards that exhibit previously undetected phase-transitions and are thus incorrect. The phase-transition energies for fused quartz are determined from the loading curves from instrument provider handbooks. The anisotropic behavior of phase transition energies is studied for the first time. Quartz is a useful test object. The reasons for the packing-dependent differences are discussed on the basis of the local crystal structure under and around the inserting tip.展开更多
基金supported by the Recruitment Program of Global Experts of Chinathe Max Planck Partner Group program+4 种基金the space mission concept study led by the National Space Science Center, Chinese Academy of SciencesThe SUMER project is financially supported by DLRCNESNASAthe ESA PRODEX programme (Swiss contribution)
文摘The solar transition region (TR) is the temperature regime from roughly 0.02 MK to 0.8 MK in the solar atmosphere. It is the transition layer from the collisional and partially ionized chromosphere to the collisionless and fully ionized corona. The TR plays an important role in the mass and energy transport in both the quiet solar atmosphere and solar eruptions. Most of the TR emission lines fall into the spectral range of far ultraviolet and extreme ultraviolet (~400/^-1600/~). Imaging and spec- troscopic observations in this spectral range are the most important ways to obtain information about the physics of the TR. Static solar atmosphere models predict a very thin TR. However, recent high- resolution observations indicate that the TR is highly dynamic and inhomogeneous. I will summarize some major findings about the TR made through imaging and spectroscopic observations in the past 20 years. These existing observations have demonstrated that the TR may be the key to understanding coronal heating and origin of the solar wind. Future exploration of the solar TR may need to focus on the upper TR, since the plasma in this temperature regime (0.1 MK-0.8 MK) has not been routinely imaged before. High-resolution imaging and spectroscopic observations of the upper TR will not only allow us to track the mass and energy from the lower atmosphere to the corona, but also help us to understand the initiation and heating mechanisms of coronal mass ejections and solar flares.
文摘Non-iterative analysis of indentation results allows for the detection of phase transitions under load and their transition energy. The closed algebraic equations have been deduced on the basis of the physically founded normal force ?depth3/2 relation. The precise transition onset position is obtained by linear regression of the FN = kh3/2 plot, where k is the penetration resistance, which also provides the axis cuts of both polymorphs of first order phase transitions. The phase changes can be endothermic or exothermic. They are normalized per μN or mN normal load. The analyses of indentation loading curves with self-similar diamond indenters are used as validity check of the loading curves, also from calibration standards that exhibit previously undetected phase-transitions and are thus incorrect. The phase-transition energies for fused quartz are determined from the loading curves from instrument provider handbooks. The anisotropic behavior of phase transition energies is studied for the first time. Quartz is a useful test object. The reasons for the packing-dependent differences are discussed on the basis of the local crystal structure under and around the inserting tip.