A lane exclusively for transit is one measure to reduce urban congestion and intelligent transportation systems (ITSs) are expected to make this policy more effective. However, the advantage may be limited if a transi...A lane exclusively for transit is one measure to reduce urban congestion and intelligent transportation systems (ITSs) are expected to make this policy more effective. However, the advantage may be limited if a transit agency does not provide sufficient vehicles. </span><span style="font-family:Verdana;">This study evaluates the effect of transit capacity on a dedicated</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">transit</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">lane policy by examining the morning commute problem, by defining user equilibrium and system optimisation considering transit capacity. It was confirmed that reduced transit capacity under user equilibrium smoothly increases the transit cost per person, which decreases the duration period of the dedicated transit lane and increases the number of early and delayed car commuters. However, the effect of reducing transit capacity under a system optimum depends on the initial solution of the system optimum.展开更多
Using the Kane-Mele Hamiltonian, Dirac theory and self-consistent Born approximation, we investigate the effect of dilute charged impurity on the electronic heat capacity and magnetic susceptibility of two-dimensional...Using the Kane-Mele Hamiltonian, Dirac theory and self-consistent Born approximation, we investigate the effect of dilute charged impurity on the electronic heat capacity and magnetic susceptibility of two-dimensional ferromagnetic honeycomb structure of group-Ⅳ elements including silicene, germanene and stanene within the Green's function approach. We also find these quantities in the presence of applied external electric field. Our results show that the silicene(stanene) has the maximum(minimum) heat capacity and magnetic susceptibility at uniform electric fields. From the behavior of theses quantities, the band gap has been changed with impurity concentration, impurity scattering strength and electric field. The analysis on the impurity-dependent magnetic susceptibility curves shows a phase transition from ferromagnetic to paramagnetic and antiferromagnetic phases. Interestingly, electronic heat capacity increases(decreases) with impurity concentration in silicene(germanene and stanene) structure.展开更多
文摘A lane exclusively for transit is one measure to reduce urban congestion and intelligent transportation systems (ITSs) are expected to make this policy more effective. However, the advantage may be limited if a transit agency does not provide sufficient vehicles. </span><span style="font-family:Verdana;">This study evaluates the effect of transit capacity on a dedicated</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">transit</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">lane policy by examining the morning commute problem, by defining user equilibrium and system optimisation considering transit capacity. It was confirmed that reduced transit capacity under user equilibrium smoothly increases the transit cost per person, which decreases the duration period of the dedicated transit lane and increases the number of early and delayed car commuters. However, the effect of reducing transit capacity under a system optimum depends on the initial solution of the system optimum.
文摘Using the Kane-Mele Hamiltonian, Dirac theory and self-consistent Born approximation, we investigate the effect of dilute charged impurity on the electronic heat capacity and magnetic susceptibility of two-dimensional ferromagnetic honeycomb structure of group-Ⅳ elements including silicene, germanene and stanene within the Green's function approach. We also find these quantities in the presence of applied external electric field. Our results show that the silicene(stanene) has the maximum(minimum) heat capacity and magnetic susceptibility at uniform electric fields. From the behavior of theses quantities, the band gap has been changed with impurity concentration, impurity scattering strength and electric field. The analysis on the impurity-dependent magnetic susceptibility curves shows a phase transition from ferromagnetic to paramagnetic and antiferromagnetic phases. Interestingly, electronic heat capacity increases(decreases) with impurity concentration in silicene(germanene and stanene) structure.