期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The effect of transition metal ions (M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis polyaniline as counter electrodes in dye-sensitized solar cells 被引量:2
1
作者 Kezhong Wu Lei Chen +2 位作者 Weizhen Cui Bei Ruan Mingxing Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期671-675,共5页
The effect of transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis of polyaniline(PANI) used as a platinum-free counter electrode(CE) in dye-sensitized solar cells(DSSCs) was investi... The effect of transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis of polyaniline(PANI) used as a platinum-free counter electrode(CE) in dye-sensitized solar cells(DSSCs) was investigated.PANI was synthesized by co-polymerization of aniline in the presence of different transition metal ions by using potassium dichromate in acidic medium. It was found that the ion doping of PANI showed a certain catalytic activity for the regeneration of traditional iodide/triiodide(I^-/I_3^-) redox couples. The power conversion efficiency(η) of PANI CEs doped with Mn^(2+),Ni^(2+),Co^(2+) (4.41%, 2.36% and 2.10%, respectively) were higher than 1.94%, the value measured for PANI CE without doping. Doping with Cu^(2+)decreased the power conversion efficiency of PANI CE(PANI-Cu^(2+) η = 1.41%). The electrical properties of the PANI, PANI-Ni^(2+), PANI-Co^(2+),PANI-Mn^(2+) and PANI-Cu^(2+) were studied by cyclic voltammetry(CV), impedance(EIS), and Tafel polarization curve. The experimental results confirmed that PANI was affected by the doping of different transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)). These results indicate a potential application of ion doped PANI as counter electrode in cost-effective DSSCs. 展开更多
关键词 Dye-sensitized solar cell Counter electrode Polyaniline transition metal ion Power conversion efficiency
下载PDF
Triplet Exciton Transition Induced Highly Efficient Fluorescent Channel in Organic Electroluminescence
2
作者 陈仁爱 孙鑫 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期66-69,共4页
The in.jection of charge carriers from the electron/hole injection or transport layers in polymer light-emitting diodes potentially increases the device efficiency not by changing of charge intensity but by lattice di... The in.jection of charge carriers from the electron/hole injection or transport layers in polymer light-emitting diodes potentially increases the device efficiency not by changing of charge intensity but by lattice distortion variation and quasi-particle interactions. From the low-dimensional condensed matter physics perspective, a valid mechanism is proposed to bring a type of novel channels that, under a proper external electric field, transition- forbidden triplet excitons are transformed and partially charged by charge carriers (polarons/bipolarons), thus are able to emit light and to enhance fluorescence greatly. 展开更多
关键词 Triplet Exciton transition Induced Highly Efficient Fluorescent Channel in Organic Electroluminescence HTL
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部