期刊文献+
共找到3,119篇文章
< 1 2 156 >
每页显示 20 50 100
Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption
1
作者 Zirui Jia Lifu Sun +1 位作者 Zhenguo Gao Di Lan 《Nano Research》 SCIE EI CSCD 2024年第11期10099-10108,共10页
Modern communication systems call for high performance electromagnetic wave absorption materials capable of mitigating microwaves over a wide frequency band. The synergistic effect of structure and component regulatio... Modern communication systems call for high performance electromagnetic wave absorption materials capable of mitigating microwaves over a wide frequency band. The synergistic effect of structure and component regulation on the electromagnetic wave absorption capacity of materials is considered. In this paper, a new type of three-dimensional porous carbon matrix composite is reported utilizing a reasonable design of surface impedance matching. Specifically, a thin layer of densely arranged Fe-Cr oxide particles is deposited on the surface of porous carbon via thermal reduction to prepare the Fe-Cr-O@PC composites. The effect of Cr doping on the electromagnetic wave absorption performance of the composites and the underlying attenuation mechanism have been uncovered. Consequently, outstanding electromagnetic wave absorption performance has been achieved in the composite, primarily contributed by the enhanced dielectric loss upon Cr doping. Accordingly, an effective absorption bandwidth of 4.08 GHz is achieved at a thickness of 1.4 mm, with a minimum reflection loss value of −52.71 dB. This work not only provides inspiration for the development of novel absorbers with superior performance but also holds significant potential for further advancement and practical application. 展开更多
关键词 microwave absorber porous carbon magnetic compounds interface layer
原文传递
Improved Efficiency and Stability of Organic Solar Cells by Interface Modification Using Atomic Layer Deposition of Ultrathin Aluminum Oxide
2
作者 Ai Lan Yiqun Li +8 位作者 Huiwen Zhu Jintao Zhu Hong Lu Hainam Do Yifan Lv Yonghua Chen Zhikuan Chen Fei Chen Wei Huang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期282-290,共9页
The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)... The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)fabricated ultrathin Al_(2)O_(3)layers are applied to modify the ETLs/active blends(PM6:BTP-BO-4F)interfaces of OSCs,thus improving device performance.The ALD-Al_(2)O_(3)thin layers on ZnO significantly improved its surface morphology,which led to the decreased work function of ZnO and reduced recombination losses in devices.The simultaneous increase in open-circuit voltage(V_(OC)),short-circuit current density(J_(SC))and fill factor(FF)were achieved for the OSCs incorporated with ALD-Al_(2)O_(3)interlayers of a certain thickness,which produced a maximum PCE of 16.61%.Moreover,the ALD-Al_(2)O_(3)interlayers had significantly enhanced device stability by suppressing degradation of the photoactive layers induced by the photocatalytic activity of ZnO and passivating surface defects of ZnO that may play the role of active sites for the adsorption of oxygen and moisture. 展开更多
关键词 atomic layer deposition interface modification organic solar cells STABILITY
下载PDF
Recent progress of hybrid cathode interface layer for organic solar cells
3
作者 Jianru Wang Dan Zhou +9 位作者 Zhentian Xu Yujie Pu Senmei Lan Fang Wang Feiyan Wu Bin Hu Yongfen Tong Ruizhi Lv Honglin Chu Lie Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期383-406,共24页
Organic solar cells(OSCs)have gained conspicuous progress during the past few decades due to the development of materials and upgrading of the device structure.The power conversion efficiency(PCE)of the single-junctio... Organic solar cells(OSCs)have gained conspicuous progress during the past few decades due to the development of materials and upgrading of the device structure.The power conversion efficiency(PCE)of the single-junction device had surpassed 19%.The cathode interface layer(CIL),by optimizing the connection between the active layer and the cathode electrode,has become a momentous part to strengthen the performances of the OSCs.Simultaneously,CIL is also indispensable to illustrating the working mechanism of OSCs and enhancing the stability of the OSCs.In this essay,hybrid CILs in OSCs have been summarized.Firstly,the advancement and operating mechanism of OSCs,and the effects and relevant design rules of CIL are briefly concluded;secondly,the significant influence of CIL on enhancing the stability and PCE of OSCs is presented;thirdly,the characteristics of organic hybrid CIL and organic-inorganic hybrid CIL are introduced.Finally,the conclusion and outlook of CIL are summarized. 展开更多
关键词 organic solar cells Theoperation mechanism organic hybrid cathode interface layer organic-inorganic hybrid CIL
下载PDF
A coupled Legendre-Laguerre polynomial method with analytical integration for the Rayleigh waves in a quasicrystal layered half-space with an imperfect interface
4
作者 Bo ZHANG Honghang TU +2 位作者 Weiqiu CHEN Jiangong YU L.ELMAIMOUNI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1539-1556,共18页
The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when th... The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices. 展开更多
关键词 coupled Legendre-Laguerre polynomial method analytical integration Rayleigh wave quasicrystal(QC)layered half-space imperfect interface
下载PDF
Micro-structure and Macro-performance:Surface Layer Evolution of Concrete under Long-term Exposure in Harsh Plateau Climate
5
作者 CHEN Xin CUI Anqi +4 位作者 ZHENG Haitao YANG Wencui HUANG Xin GE Yong LI Lihui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1496-1506,共11页
We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogr... We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogravimetry and nitrogen absorption porosimetry on cement past,mercury intrusion porosimetry on mortar,and microhardness test on interface transition zone between mortar and coarse aggregate were conducted to evaluate the hydration degree and characterize the micro-structure.Whilst,tests for the rebound strength,abrasion resistance,and chloride ion impenetrability of concrete were conducted to assess the macro-performance.The experimental results show that,affected by the harsh plateau climate,outward surfaces have lower hydration degrees and worse pore structure than inward surfaces.As the hydration of concrete surface is ongoing after the age of 180 days,both the micro-structure and the macro-performance are continuously improved.In the long-term,either the orientation or the depth towards surface does not significantly affect concrete performance.Surface carbonation brings positive effects on mechanical properties but negative effects on the durability.Additionally,standard test result of chloride ion impenetrability is found significantly affected by the atmospheric pressure.For a same batch of concrete,charge passed in plateau regions is obviously lower than that in common regions. 展开更多
关键词 CONCRETE pore structure interface transition zone mechanical property chloride ion impenetrability PLATEAU
下载PDF
TiO_(2)Electron Transport Layer with p-n Homojunctions for Efficient and Stable Perovskite Solar Cells
6
作者 Wenhao Zhao Pengfei Guo +8 位作者 Jiahao Wu Deyou Lin Ning Jia Zhiyu Fang Chong Liu Qian Ye Jijun Zou Yuanyuan Zhou Hongqiang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期1-14,共14页
Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport... Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport and thus recombination loss at buried interface.Herein,we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO_(2)ETL to accelerate electron transport in PSCs,through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude.Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO_(2)ETL,but the fabrication of perovskite films with larger-grain and the less-trap-states.The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs,favoring for the reduced voltage deficit of PSCs.Benefiting from these merits,the formamidinium lead iodide(FAPbI_(3))PSCs employing such ETLs deliver a champion efficiency of 25.50%,along with much-improved device stability under harsh conditions,i.e.,maintain over 95%of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h,as well as mixed-cation PSCs with a champion efficiency of 22.02%and over 3000 h of ambient storage under humidity stability of 40%.Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics. 展开更多
关键词 Electron transport layer p-n homojunction Electron mobility Buried interface Perovskite solar cells
下载PDF
Regulating interfacial chemistry and kinetic behaviors of F/Mo co-doping Ni-rich layered oxide cathode for long-cycling lithium-ion batteries over-20°C-60°C
7
作者 Siqi Guan Lin Tao +9 位作者 Pei Tang Ruopian Fang Huize Wu Nan Piao Huicong Yang Guangjian Hu Xin Geng Lixiang Li Baigang An Feng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期449-457,共9页
Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature condit... Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability. 展开更多
关键词 Anion-cation co-doping Wide temperature operation Ni-richlayered cathode Phase transition Surface/interface
下载PDF
Approaching Ultimate Synthesis Reaction Rate of Ni-Rich Layered Cathodes for Lithium-Ion Batteries
8
作者 Zhedong Liu Jingchao Zhang +9 位作者 Jiawei Luo Zhaoxin Guo Haoran Jiang Zekun Li Yuhang Liu Zijing Song Rui Liu Wei-Di Liu Wenbin Hu Yanan Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期392-402,共11页
Nickel-rich layered oxide LiNi_(x)Co_(y)MnzO_(2)(NCM,x+y+z=1)is the most promising cathode material for high-energy lithium-ion batteries.However,conventional synthesis methods are limited by the slow heating rate,slu... Nickel-rich layered oxide LiNi_(x)Co_(y)MnzO_(2)(NCM,x+y+z=1)is the most promising cathode material for high-energy lithium-ion batteries.However,conventional synthesis methods are limited by the slow heating rate,sluggish reaction dynamics,high energy consumption,and long reaction time.To overcome these chal-lenges,we first employed a high-temperature shock(HTS)strategy for fast synthesis of the NCM,and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time.In the HTS process,ultrafast average reaction rate of phase transition from Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_(2) to Li-containing oxides is 66.7(%s^(-1)),that is,taking only 1.5 s.An ultrahigh heating rate leads to fast reaction kinetics,which induces the rapid phase transition of NCM cathodes.The HTS-synthesized nickel-rich layered oxides perform good cycling performances(94%for NCM523,94%for NCM622,and 80%for NCM811 after 200 cycles at 4.3 V).These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries. 展开更多
关键词 Nickel-rich layered oxides High-temperature shock Solid reaction kinetics Phase transition Reaction rate
下载PDF
Achieving structurally stable O3-type layered oxide cathodes through site-specific cation-anion co-substitution for sodium-ion batteries
9
作者 Yihao Shen Chen Cheng +5 位作者 Xiao Xia Lei Wang Xi Zhou Pan Zeng Jianrong Zeng Liang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期411-418,I0011,共9页
O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrolla... O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrollable phase transitions and intricate Na^(+)diffusion pathways during cycling,resulting in compromised structural stability and reduced capacity over cycles.This study introduces a special approach employing site-specific Ca/F co-substitution within the layered structure of O_(3)-NaNi_(0.5)Mn_(0.5)O_(2) to effectively address these issues.Herein,the strategically site-specific doping of Ca into Na sites and F into O sites not only expands the Na^(+)diffusion pathways but also orchestrates a mild phase transition by suppressing the Na^(+)/vacancy ordering and providing strong metal-oxygen bonding strength,respectively.The as-synthesized Na_(0.95)Ca_(0.05)Ni_(0.5)Mn_(0.5)O_(1.95)F_(0.05)(NNMO-CaF)exhibits a mild O3→O3+O'3→P3 phase transition with minimized interlayer distance variation,leading to enhanced structural integrity and stability over extended cycles.As a result,NNMO-CaF delivers a high specific capacity of 119.5 mA h g^(-1)at a current density of 120 mA g^(-1)with a capacity retention of 87.1%after 100 cycles.This study presents a promising strategy to mitigate the challenges posed by multiple phase transitions and augment Na^(+)diffusion kinetics,thus paving the way for high-performance layered cathode materials in sodium-ion batteries. 展开更多
关键词 Sodium-ion batteries O3-type layered oxides Site-specific co-doping Phase transition
下载PDF
The Effect of a Monatomic Layer on a Surface on the Transition Radiation
10
作者 Alexander N. Safronov 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期710-723,共14页
The transition radiation of a charged particle crossing the interface of two media having a monatomic impurity layer is investigated. It is shown that at sliding angles of incidence of a particle on the boundary of th... The transition radiation of a charged particle crossing the interface of two media having a monatomic impurity layer is investigated. It is shown that at sliding angles of incidence of a particle on the boundary of the media, the transition radiation is mainly determined by the properties of the surface layer. The possibility of using transition radiation to study the surface of substances is discussed. In addition, due to the hard radiation present in space, this research may be important for the use of light monoatomic layers as a material for satellite antennas, “solar sails” and cover layers in a future space (interstellar) mission. 展开更多
关键词 Relativistic Charged Particle transition Radiation Monatomic layer Spectral Angular Distribution of Radiation Sliding Angle Investigation of Thin Films Interstellar Mission
下载PDF
Boundary Conditions for Momentum and Vorticity at an Interface between Two Fluids
11
作者 Korekazu Ueyama 《Journal of Applied Mathematics and Physics》 2024年第1期16-33,共18页
Boundary conditions for momentum and vorticity have been precisely derived, paying attention to the physical meaning of each mathematical expression of terms rigorously obtained from the basic equations: Navier-Stokes... Boundary conditions for momentum and vorticity have been precisely derived, paying attention to the physical meaning of each mathematical expression of terms rigorously obtained from the basic equations: Navier-Stokes equation and the equation of vorticity transport. It has been shown first that a contribution of fluid molecules crossing over a conceptual surface moving with fluid velocity due to their fluctuating motion is essentially important to understanding transport phenomena of momentum and vorticity. A notion of surface layers, which are thin layers at both sides of an interface, has been introduced next to elucidate the transporting mechanism of momentum and vorticity from one phase to the other at an interface through which no fluid molecules are crossing over. A fact that a size of  δV, in which reliable values of density, momentum, and velocity of fluid are respectively defined as a volume-averaged mass of fluid molecules, a volume-averaged momentum of fluid molecules and a mass-averaged velocity of fluid molecules, is not infinitesimal but finite has been one of the key factors leading to the boundary conditions for vorticity at an interface between two fluids. The most distinguished characteristics of the boundary conditions derived here are the zero-value conditions for a normal component of momentum flux and tangential components of vorticity flux, at an interface. 展开更多
关键词 Boundary Condition for Vorticity Surface layer interface Momentum Flux Vorticity Flux
下载PDF
Valley polarization in transition metal dichalcogenide layered semiconductors:Generation,relaxation,manipulation and transport
12
作者 马惠 朱耀杰 +4 位作者 刘宇伦 白瑞雪 张喜林 任琰博 蒋崇云 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期1-14,共14页
In recent years,valleytronics researches based on 2D semiconducting transition metal dichalcogenides have attracted considerable attention.On the one hand,strong spin–orbit interaction allows the presence of spin–va... In recent years,valleytronics researches based on 2D semiconducting transition metal dichalcogenides have attracted considerable attention.On the one hand,strong spin–orbit interaction allows the presence of spin–valley coupling in this system,which provides spin addressable valley degrees of freedom for information storage and processing.On the other hand,large exciton binding energy up to hundreds of me V enables excitons to be stable carriers of valley information.Valley polarization,marked by an imbalanced exciton population in two inequivalent valleys(+K and-K),is the core of valleytronics as it can be utilized to store binary information.Motivated by the potential applications,we present a thorough overview of the recent advancements in the generation,relaxation,manipulation,and transport of the valley polarization in nonmagnetic transition metal dichalcogenide layered semiconductors.We also discuss the development of valleytronic devices and future challenges in this field. 展开更多
关键词 valley polarization nonmagnetic transition metal dichalcogenide layered semiconductors EXCITON
下载PDF
Facile construction of a multilayered interface for a durable lithium‐rich cathode
13
作者 Zhou Xu Yifei Yuan +8 位作者 Qing Tang Xiangkun Nie Jianwei Li Qing Sun Naixuan Ci Zhenjie Xi Guifang Han Lijie Ci Guanghui Min 《Carbon Energy》 SCIE EI CAS CSCD 2023年第9期74-87,共14页
Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO ... Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO via facile pyrolysis of potassium Prussian blue.The multilayer interface is visually observed using an atomic-resolution scanning transmission electron microscope and a high-resolution transmission electron microscope.Combined with the electrochemical characterization,the redox of lattice oxygen is suppressed during the initial charging.In situ X-ray diffraction and the high-resolution transmission electron microscope demonstrate that the suppressed evolution of lattice oxygen eliminates the variation in the unit cell parameters during initial(de)lithiation,which further prevents lattice distortion during long cycling.As a result,the initial Coulombic efficiency of the modified LRMO is up to 87.31%,and the rate capacity and long-term cycle stability also improved considerably.In this work,a facile surface reconstruction strategy is used to suppress vigorous anionic redox,which is expected to stimulate material design in high-performance lithium ion batteries. 展开更多
关键词 lattice oxygen release lithium‐rich manganese‐based oxide cathodes reconstructed multilayer interface spinel phase transition‐metal ion migration
下载PDF
Effect of Defects at the Buffer Layer CdS/Absorber CIGS Interface on CIGS Solar Cell Performance
14
作者 Boureima Traoré Soumaïla Ouédraogo +4 位作者 Marcel Bawindsom Kébré Daouda Oubda Issiaka Sankara Adama Zongo François Zougmoré 《Advances in Chemical Engineering and Science》 2023年第4期289-300,共12页
This scientific paper presents a study investigating the effects of defects at the CdS/CIGS and CdS/SDL interfaces on the performance of CIGS solar cells. The objective of this study is to analyze the influence of def... This scientific paper presents a study investigating the effects of defects at the CdS/CIGS and CdS/SDL interfaces on the performance of CIGS solar cells. The objective of this study is to analyze the influence of defects at the interface between the CdS buffer layer and the CIGS absorber, as well as the surface defect layer (SDL), on CIGS solar cell performance. The study explores three key aspects: the impact of the conduction band offset (CBO) at the CdS/CIGS interface, the effects of interface defects and defect density on performance, and the combined influence of CBO and defect density at the CdS/ SDL and SDL/CIGS interfaces. For interface defects not exceeding 10<sup>13</sup> cm<sup>-2</sup>, we obtained a good efficiency of 22.9% when -0.1 eV analyzing the quality of CdS/SDL and SDL/CIGS junctions, it appears that defects at the SDL/CIGS interface have very little impact on the performances of the CIGS solar cell. By optimizing the electrical parameters of the CdS/SDL interface defects, we achieved a conversion efficiency of 23.1% when -0.05 eV < CBO < 0.05 eV. 展开更多
关键词 Numerical Simulation CdS/CIGS interface interface Defects Conduction Band Offset (CBO) Surface Defect layer (SDL)
下载PDF
Synergistic Optimization of Buried Interface by Multifunctional Organic-Inorganic Complexes for Highly Efficient Planar Perovskite Solar Cells 被引量:2
15
作者 Heng Liu Zhengyu Lu +7 位作者 Weihai Zhang Hongkang Zhou Yu Xia Yueqing Shi Junwei Wang Rui Chen Haiping Xia Hsing-Lin Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期505-519,共15页
For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is ch... For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is challenging to effectively optimize this interface as it is buried beneath the perovskite film.Herein,we have designed and synthesized a series of multifunctional organic-inorganic(OI)complexes as buried interfacial material to promote electron extraction,as well as the crystal growth of the perovskite.The OI complex with BF4−group not only eliminates oxygen vacancies on the SnO_(2) surface but also balances energy level alignment between SnO_(2) and perovskite,providing a favorable environment for charge carrier extraction.Moreover,OI complex with amine(−NH_(2))functional group can regulate the crystallization of the perovskite film via interaction with PbI2,resulting in highly crystallized perovskite film with large grains and low defect density.Consequently,with rational molecular design,the PSCs with optimal OI complex buried interface layer which contains both BF4−and−NH_(2) functional groups yield a champion device efficiency of 23.69%.More importantly,the resulting unencapsulated device performs excellent ambient stability,maintaining over 90%of its initial efficiency after 2000 h storage,and excellent light stability of 91.5%remaining PCE in the maximum power point tracking measurement(under continuous 100 mW cm−2 light illumination in N2 atmosphere)after 500 h. 展开更多
关键词 Perovskite solar cells organic Inorganic complexes Multifunctional interfacial material Buried interface layer
下载PDF
Heterostructured bimetallic phosphide nanowire arrays with latticetorsion interfaces for efficient overall water splitting 被引量:1
16
作者 Hua Zhang Hongyi Li +7 位作者 Yintang Zhou Fang Tan Ruijie Dai Xijun Liu Guangzhi Hu Laiming Jiang Anran Chen Renbing Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期420-427,I0011,共9页
Designing cost-effective and high-efficiency electrocatalysts is critical to the water splitting performance during hydrogen generation.Herein,we have developed Fe_(2)P-Co_(2)P heterostructure nanowire arrays with exc... Designing cost-effective and high-efficiency electrocatalysts is critical to the water splitting performance during hydrogen generation.Herein,we have developed Fe_(2)P-Co_(2)P heterostructure nanowire arrays with excellent lattice torsions and grain boundaries for highly efficient water splitting.According to the microstructural investigations and theoretical calculations,the lattice torsion interface not only contributes to the exposure of more active sites but also effectively tunes the adsorption energy of hydrogen/oxygen intermediates via the accumulation of charge redistribution.As a result,the Fe_(2)P-Co_(2)P heterostructure nanowire array exhibits exceptional bifunctional catalytic activity with overpotentials of 65 and 198 mV at 10 mA cm^(-2) for hydrogen and oxygen evolution reactions,respectively.Moreover,the Fe_(2)P-Co_(2)P/NF-assembled electrolyzer can deliver 10 mA cm^(-2) at an ultralow voltage of1.51 V while resulting in a high solar-to-hydrogen conversion efficiency of 19.8%in the solar-driven water electrolysis cell. 展开更多
关键词 transition metal phosphide Lattice torsion Heterogeneous interfaces Water splitting Theoretical calculation
下载PDF
Comparative coherence between layered and traditional semiconductors: unique opportunities for heterogeneous integration 被引量:1
17
作者 Zhuofan Chen Xiaonan Deng +11 位作者 Simian Zhang Yuqi Wang Yifei Wu Shengxian Ke Junshang Zhang Fucheng Liu Jianing Liu Yingjie Liu Yuchun Lin Andrew Hanna Zhengcao Li Chen Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期1-35,共35页
As Moore’s law deteriorates,the research and development of new materials system are crucial for transitioning into the post Moore era.Traditional semiconductor materials,such as silicon,have served as the cornerston... As Moore’s law deteriorates,the research and development of new materials system are crucial for transitioning into the post Moore era.Traditional semiconductor materials,such as silicon,have served as the cornerstone of modern technologies for over half a century.This has been due to extensive research and engineering on new techniques to continuously enrich silicon-based materials system and,subsequently,to develop better performed silicon-based devices.Meanwhile,in the emerging post Moore era,layered semiconductor materials,such as transition metal dichalcogenides(TMDs),have garnered considerable research interest due to their unique electronic and optoelectronic properties,which hold great promise for powering the new era of next generation electronics.As a result,techniques for engineering the properties of layered semiconductors have expanded the possibilities of layered semiconductor-based devices.However,there remain significant limitations in the synthesis and engineering of layered semiconductors,impeding the utilization of layered semiconductor-based devices for mass applications.As a practical alternative,heterogeneous integration between layered and traditional semiconductors provides valuable opportunities to combine the distinctive properties of layered semiconductors with well-developed traditional semiconductors materials system.Here,we provide an overview of the comparative coherence between layered and traditional semiconductors,starting with TMDs as the representation of layered semiconductors.We highlight the meaningful opportunities presented by the heterogeneous integration of layered semiconductors with traditional semiconductors,representing an optimal strategy poised to propel the emerging semiconductor research community and chip industry towards unprecedented advancements in the coming decades. 展开更多
关键词 heterogeneous integration van der Waals heterostructure post Moore era layered semiconductor transition metal dichalcogenide layered-traditional semiconductor heterostructure
下载PDF
Nano silica aerogel-induced formation of an organic/alloy biphasic interfacial layer enables construction of stable high-energy lithium metal batteries 被引量:1
18
作者 Chengwei Ma Xinyu Zhang +6 位作者 Chengcai Liu Yuanxing Zhang Yuanshen Wang Ling Liu Zhikun Zhao Borong Wu Daobin Mu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1071-1080,共10页
Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aero... Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aerogel was employed to generate a hybrid film with high lithium ion conductivity(0.6 mS cm^(-1)at room temperature) via an in situ crosslinking reaction. TOF-SIMS profile analysis has revealed conversion mechanism of hybrid film to Li–Si alloy/Li F biphasic interface layer, suggesting that the Li–Si alloy and Li F-rich interface layer promoted rapid Li+transport and shielded the Li anodes from corrosive reactions with electrolyte-derived products. When coupled with nickel-cobalt-manganese-based cathodes, the batteries achieve outstanding capacity retention over 1000 cycles at 1 C. Additionally the developed film coated on Li enabled high coulombic efficiency(99.5%) after long-term cycling when coupled with S cathodes. Overall, the results presented herein confirm an effective strategy for the development of high-energy batteries. 展开更多
关键词 Lithium metal batteries Nano silica aerogel In situ crosslinking Biphasic interface layer Li–Si alloy
下载PDF
Mechanical properties and friction-wear characteristics of VN/Ag multilayer coatings with heterogeneous and transition interfaces 被引量:10
19
作者 Yong-qiang ZHAO Yong-tao MU Ming LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第2期472-483,共12页
The heterogeneous multilayer interface of VN/Ag coatings and transition multilayer interface of VN/Ag coatings were prepared on Inconel 781 and Si(100),and the microstructures,mechanical and tribological properties we... The heterogeneous multilayer interface of VN/Ag coatings and transition multilayer interface of VN/Ag coatings were prepared on Inconel 781 and Si(100),and the microstructures,mechanical and tribological properties were investigated from 25 to 700℃.The results showed that the surface roughness and average grain size of VN/Ag coatings with transition multilayer interface are obviously larger than those of VN/Ag coatings with heterogeneous multilayer interface.The coatings with transition multilayer interface have higher adhesion force and hardness than the coatings with heterogeneous multilayer interface,and both coatings can effectively restrict the initiation and propagation of microcracks.Both coatings have excellent self-adaptive lubricating properties with a decrease of friction coefficient as the temperature increases,but their wear rates reveal a drastic increase.The phase composition of the worn area of both coatings was investigated,which indicates that a smooth Ag,Magnéli phase(V2O5)and bimetallic oxides(Ag3VO4 and AgVO3)can be responsible to the excellent lubricity of both coatings.To sum up,the coatings with transition multilayer interface have excellent adaptive lubricating properties and can properly control the diffusion rate and release rate of the lubricating phase,indicating that they have great potential in solving the problem of friction and wear of mechanical parts. 展开更多
关键词 VN/Ag multilayer coatings heterogeneous multilayer interface transition multilayer interface tribological properties friction temperature OXIDES
下载PDF
Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces 被引量:3
20
作者 Hadi Bashiri Mohammad Azim Karami Shahramm Mohammadnejad 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第10期508-514,共7页
By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The... By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters (doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of 2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density. 展开更多
关键词 IBC silicon solar cells interface layer recombination interface defect density
下载PDF
上一页 1 2 156 下一页 到第
使用帮助 返回顶部