期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
De Broglie’s Velocity of Transition between Quantum Levels and the Quantum of the Magnetic Spin Moment Obtained from the Uncertainty Principle for Energy and Time
1
作者 Stanislaw Olszewski 《Journal of Modern Physics》 2014年第18期2022-2029,共8页
The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state ... The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state as a function of n. The paper shows, for the case of the harmonic oscillator taken as an example, that the De Broglie’s dependence of the transition velocity on n is equal to the n-dependence of that velocity calculated with the aid of the uncertainty principle for the energy and time. In the next step the minimal distance parameter provided by the uncertainty principle is applied in calculating the magnetic moment of the electron which effectuates its orbital motion in the magnetic field. This application gives readily the electron spin magnetic moment as well as the quantum of the magnetic flux known in superconductors as its result. 展开更多
关键词 Velocity of the Electron transitions between Quantum levels De Broglie Wave Packets Magnetic Moment of the Electron Spin Quantum of the Magnetic Flux The Uncertainty Principle for Energy and Time
下载PDF
Relativistic Reduction of the Electron-Nucleus Force in Bohr’s Hydrogen Atom and the Time of Electron Transition between the Neighbouring Quantum Energy Levels
2
作者 Stanisław Olszewski 《Journal of Modern Physics》 2020年第6期944-951,共8页
The aim of the paper is to get an insight into the time interval of electron emission done between two neighbouring energy levels of the hydrogen atom. To this purpose, in the first step, the formulae of the special r... The aim of the paper is to get an insight into the time interval of electron emission done between two neighbouring energy levels of the hydrogen atom. To this purpose, in the first step, the formulae of the special relativity are applied to demonstrate the conditions which can annihilate the electrostatic force acting between the nucleus and electron in the atom. This result is obtained when a suitable electron speed entering the Lorentz transformation is combined with the strength of the magnetic field acting normally to the electron orbit in the atom. In the next step, the Maxwell equation characterizing the electromotive force is applied to calculate the time interval connected with the change of the magnetic field necessary to produce the force. It is shown that the time interval obtained from the Maxwell equation, multiplied by the energy change of two neighbouring energy levels considered in the atom, does satisfy the Joule-Lenz formula associated with the quantum electron energy emission rate between the levels. 展开更多
关键词 Hydrogen Atom The Bohr Model Lorentz Transformation Done with the Aid of the Electron Orbital Speed Maxwell Equation Applied to Calculate the Time Interval of Electron transitions between Two Quantum Energy levels Comparison with the Joule-Lenz Law for Energy Emission
下载PDF
Transition Gibbs free energy level cross section and formulation of carrier SRH recombination rate 被引量:1
3
作者 Ken K.Chin 《Journal of Semiconductors》 EI CAS CSCD 2013年第12期9-12,共4页
The transition among multiple charging states of a semiconductor's localized intrinsic/impurity defects is considered as phase transitions, and the concept of transition Gibbs free energy level (TGFEL) is proposed.... The transition among multiple charging states of a semiconductor's localized intrinsic/impurity defects is considered as phase transitions, and the concept of transition Gibbs free energy level (TGFEL) is proposed. Dependence of the cross section of TGFEL on its charge state is discussed. Introduction of TGFEL to replace acti- vation energy has fundamentally important consequences for semiconductor physics and devices. TGFEL involves entropy. What is to be included and not included in the entropy term consistently for all defect levels is an unre- solved open question, related to correct interpretation of various experimental data associated with various defect levels. This work is a first step towards resolving this question. 展开更多
关键词 transition Gibbs free energy level Shockley-Read-Hall single level defects
原文传递
Time of the Energy Emission in the Hydrogen Atom and Its Electrodynamical Background
4
作者 Stanisław Olszewski 《Journal of Modern Physics》 2016年第13期1725-1737,共13页
The time of the energy emission between two neighbouring electron levels in the hydrogen atom has been calculated first on the basis of the quantum aspects of the Joule-Lenz law, next this time is approached with the ... The time of the energy emission between two neighbouring electron levels in the hydrogen atom has been calculated first on the basis of the quantum aspects of the Joule-Lenz law, next this time is approached with the aid of the electrodynamical parameters characteristic for the electron motion in the atom. Both methods indicate a similar result, namely that the time of emission is close to the time period of the electromagnetic wave produced in course of the emission. As a by-product of calculations, the formula representing the radius of the electron microparticle is obtained from a simple combination of the expressions for the Bohr magnetic moment and a quantum of the magnetic flux. 展开更多
关键词 Energy Emission in the Hydrogen Atom Time of the Electron transition between Two Quantum levels Electrodynamical Parameters Characteristic for the Electron transition
下载PDF
Low-lying states of Hg isotopes within the nucleon pair approximation 被引量:1
5
作者 JIANG Hui ZHAO YuMin 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第8期1461-1465,共5页
The low-lying states of 200-205Hg nuclei have been studied by using the nucleon pair approximation (NPA) of the shell model. We calculate low-excited energy levels, electric quadrupole moments, and magnetic dipole mom... The low-lying states of 200-205Hg nuclei have been studied by using the nucleon pair approximation (NPA) of the shell model. We calculate low-excited energy levels, electric quadrupole moments, and magnetic dipole moments, and investigate dominant configurations of low-lying states in the nucleon pair basis. Our calculations reasonably reproduce the available experimental data. We also tabulate our predicted results of low-lying states, including excitation energies, electric quadrupole moments and magnetic moments. 展开更多
关键词 collective levels shell model γ transitions and level energies
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部