Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) un...Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) under high pressure by electrical resistance investigations,synchrotron x-ray diffraction,Raman scattering and theoretical calculations.Up to 70 GPa,an unusual metal-semiconductor-metal transition occurs.Our first-principles calculations suggest that the observed anti-Wilson transition from metal to semiconductor at 17 GPa is due to the electron localization induced by the intercalated Ti atoms.This electron localization is attributed to the strengthened coupling between the doped Ti atoms and S atoms,and the Anderson localization arising from the disordered intercalation.At pressures exceeding 30.5 GPa,the doped TiS_(2) undergoes a re-metallization transition initiated by a crystal structure phase transition.We assign the most probable space group as P2_(1)2_(1)2_(1).Our findings suggest that materials probably will eventually undergo the Wilson transition when subjected to sufficient pressure.展开更多
Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method f...Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method for transition metal dichalcogenides(TMDs),which can effectively be used to extend the optical response range.The p-type doping based on surface charge transfer involves the chemical adsorption of the Lewis acid SnCl_(4)as a light absorption layer on the surface of WS_(2),significantly enhancing its UV photodetection performance.Under 365 nm laser irradiation,WS_(2)PDs exhibit response speed of 24 ms/20 ms,responsivity of 660 mA/W,detectivity of 3.3×10^(11)Jones,and external quantum efficiency of 226%.Moreover,we successfully apply this doping method to other TMDs materials(such as MoS_(2),MoSe_(2),and WSe_(2))and fabricate WS_(2) lateral p–n heterojunction PDs.展开更多
Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photoc...Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photocatalyst materials are beneficial for photocatalytic activity.In this study,surface defects(oxygen vacancies and metal cation replacement defects)were induced with a facile and effective approach by surface doping with low‐cost transition metals(Co,Ni,Cu,and Mn)on ultrafine TiO2.The obtained surface‐defective TiO2exhibited a3–4‐fold improved activity compared to that of the original ultrafine TiO2.In addition,a H2production rate of3.4μmol/h was obtained using visible light(λ>420nm)irradiation.The apparent quantum yield(AQY)at365nm reached36.9%over TiO2‐Cu,significantly more than the commercial P25TiO2.The enhancement of photocatalytic H2production activity can be attributed to improved rapid charge separation efficiency andexpanded light absorption window.This hydrothermal treatment with transition metal was proven to be a very facile and effective method for obtaining surface defects.展开更多
Durable and inexpensive graphitic carbon nitride(g-C_(3)N_(4))demonstrates great potential for achieving efficient photocatalytic hydrogen evolution reduction(HER).To further improve its activity,g-C_(3)N_(4)was subje...Durable and inexpensive graphitic carbon nitride(g-C_(3)N_(4))demonstrates great potential for achieving efficient photocatalytic hydrogen evolution reduction(HER).To further improve its activity,g-C_(3)N_(4)was subjected to atomic-level structural engineering by doping with transition metals(M=Fe,Co,or Ni),which simultaneously induced the formation of metal-N active sites in the g-C_(3)N_(4)framework and modulated the bandgap of g-C_(3)N_(4).Experiments and density functional theory calculations further verified that the as-formed metal-N bonds in M-doped g-C_(3)N_(4)acted as an"electron transfer bridge",where the migration of photo-generated electrons along the bridge enhanced the efficiency of separation of the photogenerated charges,and the optimized bandgap of g-C_(3)N_(4)afforded stronger reduction ability and wider light absorption.As a result,doping with either Fe,Co,or Ni had a positive effect on the HER activity,where Co-doped g-C_(3)N_(4)exhibited the highest performance.The findings illustrate that this atomic-level structural engineering could efficiently improve the HER activity and inspire the design of powerful photocatalysts.展开更多
Two-dimensional electride Ca_(2)N has strong electron transfer ability and low work function,which is a potential candidate for hydrogen evolution reaction(HER)catalyst.In this work,based on density functional theory ...Two-dimensional electride Ca_(2)N has strong electron transfer ability and low work function,which is a potential candidate for hydrogen evolution reaction(HER)catalyst.In this work,based on density functional theory calculations,we adopt two strategies to improve the HER catalytic activity of Ca_(2)N monolayer:introducing Ca or N vacancy and doping transition metal atoms(TM,refers to Ti,V,Cr,Mn,Fe,Zr,Nb,Mo,Ru,Hf,Ta and W).Interestingly,the Gibbs free energyΔG_(H*)of Ca_(2)N monolayer after introducing N vacancy is reduced to-0.146 e V,showing good HER catalytic activity.It is highlighted that,the HER catalytic activity of Ca_(2)N monolayer can be further enhanced with TM doping,the Gibbs free energyΔG_(H*)of single Mo and double Mn doped Ca_(2)N are predicted to be 0.119 and 0.139 e V,respectively.The present results will provide good theoretical guidance for the HER catalysis applications of two-dimensional electride Ca_(2)N monolayer.展开更多
A series of transition metals(Fe,Co,Ni,Cu,Cr and Mn)-doped CeO_(2)-TiO_(2) catalysts were prepared by the sol-gel method and applied for the catalytic removal of 1,2-dichloroethane(DCE) as a model for chlorinated VOCs...A series of transition metals(Fe,Co,Ni,Cu,Cr and Mn)-doped CeO_(2)-TiO_(2) catalysts were prepared by the sol-gel method and applied for the catalytic removal of 1,2-dichloroethane(DCE) as a model for chlorinated VOCs(CVOCs).The various characterization methods including X-ray diffraction(XRD),N_(2) adsorption-desorption,UV-Raman,NH_(3) temperature-programmed desorption(NH_(3)-TPD) and H_(2) temperature-programmed reduction(H_(2)-TPR) were utilized to investigate the physicochemical properties of the catalysts.The results show that doping Fe,Co,Ni or Mn can obviously promote the activity of CeO_(2)-TiO_(2) mixed oxides for DCE degradation,which is related to their improved texture properties,acid sites(especially for strong acidity) and low-temperature reducibility.Particularly,CeTi-Fe doped with moderate Fe exhibits excellent activity for 1,2-dichloroethane(DCE) degradation,giving a T_(90%) value as low as 250℃.More importantly,only trace chlorinated byproducts were produced during the low-temperature degradation of various CVOCs(dichloromethane(DCM),trichloroethylene(TCE) and chlorobenzene(CB)) over CeTi-Fe1/9 catalyst with high durability.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 12304072)Program for Science and Technology Innovation Team in Zhejiang (Grant No. 2021R01004)+1 种基金Natural Science Foundation of Ningbo(Grant No. 2021J121)supported by the User Experiment Assist System of Shanghai Synchrotron Radiation Facility (SSRF)。
文摘Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) under high pressure by electrical resistance investigations,synchrotron x-ray diffraction,Raman scattering and theoretical calculations.Up to 70 GPa,an unusual metal-semiconductor-metal transition occurs.Our first-principles calculations suggest that the observed anti-Wilson transition from metal to semiconductor at 17 GPa is due to the electron localization induced by the intercalated Ti atoms.This electron localization is attributed to the strengthened coupling between the doped Ti atoms and S atoms,and the Anderson localization arising from the disordered intercalation.At pressures exceeding 30.5 GPa,the doped TiS_(2) undergoes a re-metallization transition initiated by a crystal structure phase transition.We assign the most probable space group as P2_(1)2_(1)2_(1).Our findings suggest that materials probably will eventually undergo the Wilson transition when subjected to sufficient pressure.
基金the National Nat-ural Science Foundation of China(Grant Nos.12025503,U23B2072,12074293,and 12275198)the Funda-mental Research Funds for the Center Universities(Grant Nos.2042024kf0001 and 2042023kf0196).
文摘Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method for transition metal dichalcogenides(TMDs),which can effectively be used to extend the optical response range.The p-type doping based on surface charge transfer involves the chemical adsorption of the Lewis acid SnCl_(4)as a light absorption layer on the surface of WS_(2),significantly enhancing its UV photodetection performance.Under 365 nm laser irradiation,WS_(2)PDs exhibit response speed of 24 ms/20 ms,responsivity of 660 mA/W,detectivity of 3.3×10^(11)Jones,and external quantum efficiency of 226%.Moreover,we successfully apply this doping method to other TMDs materials(such as MoS_(2),MoSe_(2),and WSe_(2))and fabricate WS_(2) lateral p–n heterojunction PDs.
基金supported by the Double First‐rate Subject‐Food Science and Engineering Program of Hebei Province (2018SPGCA18)Young Tip‐top Talents Plan of Universities and Colleges in Hebei Province of China (BJ2017026)the Specific Foundation for Doctor in Hebei Agriculture University of China (ZD201709)~~
文摘Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photocatalyst materials are beneficial for photocatalytic activity.In this study,surface defects(oxygen vacancies and metal cation replacement defects)were induced with a facile and effective approach by surface doping with low‐cost transition metals(Co,Ni,Cu,and Mn)on ultrafine TiO2.The obtained surface‐defective TiO2exhibited a3–4‐fold improved activity compared to that of the original ultrafine TiO2.In addition,a H2production rate of3.4μmol/h was obtained using visible light(λ>420nm)irradiation.The apparent quantum yield(AQY)at365nm reached36.9%over TiO2‐Cu,significantly more than the commercial P25TiO2.The enhancement of photocatalytic H2production activity can be attributed to improved rapid charge separation efficiency andexpanded light absorption window.This hydrothermal treatment with transition metal was proven to be a very facile and effective method for obtaining surface defects.
文摘Durable and inexpensive graphitic carbon nitride(g-C_(3)N_(4))demonstrates great potential for achieving efficient photocatalytic hydrogen evolution reduction(HER).To further improve its activity,g-C_(3)N_(4)was subjected to atomic-level structural engineering by doping with transition metals(M=Fe,Co,or Ni),which simultaneously induced the formation of metal-N active sites in the g-C_(3)N_(4)framework and modulated the bandgap of g-C_(3)N_(4).Experiments and density functional theory calculations further verified that the as-formed metal-N bonds in M-doped g-C_(3)N_(4)acted as an"electron transfer bridge",where the migration of photo-generated electrons along the bridge enhanced the efficiency of separation of the photogenerated charges,and the optimized bandgap of g-C_(3)N_(4)afforded stronger reduction ability and wider light absorption.As a result,doping with either Fe,Co,or Ni had a positive effect on the HER activity,where Co-doped g-C_(3)N_(4)exhibited the highest performance.The findings illustrate that this atomic-level structural engineering could efficiently improve the HER activity and inspire the design of powerful photocatalysts.
基金supported by the National Natural Science Foundation of China(No.21973012)the Natural Science Foundation of Fujian Province(Nos.2020J01474,2021J06011 and 2020J01351)the"Qishan Scholar"Scientific Research Project of Fuzhou University。
文摘Two-dimensional electride Ca_(2)N has strong electron transfer ability and low work function,which is a potential candidate for hydrogen evolution reaction(HER)catalyst.In this work,based on density functional theory calculations,we adopt two strategies to improve the HER catalytic activity of Ca_(2)N monolayer:introducing Ca or N vacancy and doping transition metal atoms(TM,refers to Ti,V,Cr,Mn,Fe,Zr,Nb,Mo,Ru,Hf,Ta and W).Interestingly,the Gibbs free energyΔG_(H*)of Ca_(2)N monolayer after introducing N vacancy is reduced to-0.146 e V,showing good HER catalytic activity.It is highlighted that,the HER catalytic activity of Ca_(2)N monolayer can be further enhanced with TM doping,the Gibbs free energyΔG_(H*)of single Mo and double Mn doped Ca_(2)N are predicted to be 0.119 and 0.139 e V,respectively.The present results will provide good theoretical guidance for the HER catalysis applications of two-dimensional electride Ca_(2)N monolayer.
基金Project supported by the National Key Research and Development Program of China(2016YFC0204300)the National Natural Science Foundation of China(21477109)。
文摘A series of transition metals(Fe,Co,Ni,Cu,Cr and Mn)-doped CeO_(2)-TiO_(2) catalysts were prepared by the sol-gel method and applied for the catalytic removal of 1,2-dichloroethane(DCE) as a model for chlorinated VOCs(CVOCs).The various characterization methods including X-ray diffraction(XRD),N_(2) adsorption-desorption,UV-Raman,NH_(3) temperature-programmed desorption(NH_(3)-TPD) and H_(2) temperature-programmed reduction(H_(2)-TPR) were utilized to investigate the physicochemical properties of the catalysts.The results show that doping Fe,Co,Ni or Mn can obviously promote the activity of CeO_(2)-TiO_(2) mixed oxides for DCE degradation,which is related to their improved texture properties,acid sites(especially for strong acidity) and low-temperature reducibility.Particularly,CeTi-Fe doped with moderate Fe exhibits excellent activity for 1,2-dichloroethane(DCE) degradation,giving a T_(90%) value as low as 250℃.More importantly,only trace chlorinated byproducts were produced during the low-temperature degradation of various CVOCs(dichloromethane(DCM),trichloroethylene(TCE) and chlorobenzene(CB)) over CeTi-Fe1/9 catalyst with high durability.