As the world's biggest carbon dioxide(CO_(2))emitter and the largest developing country,China faces daunting challenges to peak its emissions before 2030 and achieve carbon neutrality within 40 years.This study fu...As the world's biggest carbon dioxide(CO_(2))emitter and the largest developing country,China faces daunting challenges to peak its emissions before 2030 and achieve carbon neutrality within 40 years.This study fully considered the carbon-neutrality goal and the temperature rise constraints required by the Paris Agreement,by developing six long-term development scenarios,and conducting a quantitative evaluation on the carbon emissions pathways,energy transformation,technology,policy and investment demand for each scenario.This study combined both bottom-up and top-down methodologies,including simulations and analyses of energy consumption of end-use and power sectors(bottom-up),as well as scenario analysis,investment demand and technology evaluation at the macro level(top-down).This study demonstrates that achieving carbon neutrality before 2060 translates to significant efforts and overwhelming challenges for China.To comply with the target,a high rate of an average annual reduction of CO_(2) emissions by 9.3%from 2030 to 2050 is a necessity,which requires a huge investment demand.For example,in the 1.5℃ scenario,an investment in energy infrastructure alone equivalent to 2.6%of that year's GDP will be necessary.The technological pathway towards carbon neutrality will rely highly on both conventional emission reduction technologies and breakthrough technologies.China needs to balance a long-term development strategy of lower greenhouse gas emissions that meets both the Paris Agreement and the long-term goals for domestic economic and social development,with a phased implementation for both its five-year and long-term plans.展开更多
When two distinct ordered phases contact,the interface may exhibit rich and fascinating structures.Focusing on the Cylinder-Gyroid interface system,transition pathways connecting various interface morphologies are stu...When two distinct ordered phases contact,the interface may exhibit rich and fascinating structures.Focusing on the Cylinder-Gyroid interface system,transition pathways connecting various interface morphologies are studied armed with the Landau–Brazovskii model.Specifically,minimum energy paths are obtained by computing transition states with the saddle dynamics.We present four primary transition pathways connecting different local minima,representing four different mechanisms of the formation of the Cylinder-Gyroid interface.The connection of Cylinder and Gyroid can be either direct or indirect via Fddd with three different orientations.Under different displacements,each of the four pathways may have the lowest energy.展开更多
The energy sector has an essential role in limiting the global average temperature increase to below 2°C.Redirecting and advancing technological progress contribute to carbon-free transition solutions.Energy tran...The energy sector has an essential role in limiting the global average temperature increase to below 2°C.Redirecting and advancing technological progress contribute to carbon-free transition solutions.Energy transition is currently one of the most debated issues in the world.This paper reviews and summarizes the current policy projections and their assumptions organized by some major countries in the energy sector,particularly in the coal sector,and provides a detailed discussion on specific and significant socio-technical pathways taken by countries to achieve zero-carbon targets.Their implementation involves restructuring the existing energy system and requires appropriate policy support and sufficient investment in infrastructure development and technological innovation.Some basic principles and countermeasures that have already been implemented by some major emitters,such as India and China,are also discussed,with different transformation pathways.Critical suggestions are also provided,such as implementing best practice policies at the national level,moving to more efficient transition strategies,national and regional cooperation,cross-border energy grid integration,and private sector involvement to reduce carbon emissions from coal-fired power plants,not only by reducing coal consumption but also by introducing various low carbon technologies.展开更多
The endothelial-to-mesenchymal transition(End MT) in endothelial cells contributes to the development of cardiac fibrosis,ultimately leading to cardiac remodeling.In this study,the effects and molecular mechanisms o...The endothelial-to-mesenchymal transition(End MT) in endothelial cells contributes to the development of cardiac fibrosis,ultimately leading to cardiac remodeling.In this study,the effects and molecular mechanisms of celastrol(CEL) on transforming growth factor-β1(TGF-β1)-induced End MT in human umbilical vein endothelial(HUVEC-12) cells were investigated.The presented data demonstrated that CEL significantly blocked the morphology change of HUVEC-12 cells induced by TGF-β1 without cell cytotoxicity.In accordance with these findings,CEL blocked TGF-β1-induced EndM T as evidenced by the inhibition of the mesenchymal markers,including collagen Ⅰ,Ⅲ,α-SMA,fibronectin m RNA expression,and the increase in the m RNA expression of endothelial cell marker CD31.These changes were also confirmed by double immunofluorescence staining of CD31 and vimentin.The in vitro scratch assay showed that CEL inhibited the migration capacity of the transitioned endothelial cells induced by TGF-β1.Further experiments showed that the beneficial effect of CEL on blocking the End MT in HUVEC-12 cells was associated with the suppression of the TGF-β1/Smads signalling pathway,which was also confirmed by the inhibition of its downstream transcription factor snail1,twist1,twist2,ZEB1 and ZEB2.These results indicate that CEL blocks TGF-β1-induced End MT through TGF-β1/Smads signalling pathway and suggest that it may be a feasible therapy for cardiac fibrosis diseases.展开更多
文摘As the world's biggest carbon dioxide(CO_(2))emitter and the largest developing country,China faces daunting challenges to peak its emissions before 2030 and achieve carbon neutrality within 40 years.This study fully considered the carbon-neutrality goal and the temperature rise constraints required by the Paris Agreement,by developing six long-term development scenarios,and conducting a quantitative evaluation on the carbon emissions pathways,energy transformation,technology,policy and investment demand for each scenario.This study combined both bottom-up and top-down methodologies,including simulations and analyses of energy consumption of end-use and power sectors(bottom-up),as well as scenario analysis,investment demand and technology evaluation at the macro level(top-down).This study demonstrates that achieving carbon neutrality before 2060 translates to significant efforts and overwhelming challenges for China.To comply with the target,a high rate of an average annual reduction of CO_(2) emissions by 9.3%from 2030 to 2050 is a necessity,which requires a huge investment demand.For example,in the 1.5℃ scenario,an investment in energy infrastructure alone equivalent to 2.6%of that year's GDP will be necessary.The technological pathway towards carbon neutrality will rely highly on both conventional emission reduction technologies and breakthrough technologies.China needs to balance a long-term development strategy of lower greenhouse gas emissions that meets both the Paris Agreement and the long-term goals for domestic economic and social development,with a phased implementation for both its five-year and long-term plans.
基金supported by the National Natural Science Foundation of China No.12001524 and and No.12288201supported by the National Natural Science Foundation of China No.12050002 and the National Key R&D Program of China 2021YFF1200500.
文摘When two distinct ordered phases contact,the interface may exhibit rich and fascinating structures.Focusing on the Cylinder-Gyroid interface system,transition pathways connecting various interface morphologies are studied armed with the Landau–Brazovskii model.Specifically,minimum energy paths are obtained by computing transition states with the saddle dynamics.We present four primary transition pathways connecting different local minima,representing four different mechanisms of the formation of the Cylinder-Gyroid interface.The connection of Cylinder and Gyroid can be either direct or indirect via Fddd with three different orientations.Under different displacements,each of the four pathways may have the lowest energy.
基金Global Energy Internet Group Co.,Ltd Science and Technology Project(SGGEIG00JYJS2000046)by National Natural Science Foundation of China(51977123).
文摘The energy sector has an essential role in limiting the global average temperature increase to below 2°C.Redirecting and advancing technological progress contribute to carbon-free transition solutions.Energy transition is currently one of the most debated issues in the world.This paper reviews and summarizes the current policy projections and their assumptions organized by some major countries in the energy sector,particularly in the coal sector,and provides a detailed discussion on specific and significant socio-technical pathways taken by countries to achieve zero-carbon targets.Their implementation involves restructuring the existing energy system and requires appropriate policy support and sufficient investment in infrastructure development and technological innovation.Some basic principles and countermeasures that have already been implemented by some major emitters,such as India and China,are also discussed,with different transformation pathways.Critical suggestions are also provided,such as implementing best practice policies at the national level,moving to more efficient transition strategies,national and regional cooperation,cross-border energy grid integration,and private sector involvement to reduce carbon emissions from coal-fired power plants,not only by reducing coal consumption but also by introducing various low carbon technologies.
文摘The endothelial-to-mesenchymal transition(End MT) in endothelial cells contributes to the development of cardiac fibrosis,ultimately leading to cardiac remodeling.In this study,the effects and molecular mechanisms of celastrol(CEL) on transforming growth factor-β1(TGF-β1)-induced End MT in human umbilical vein endothelial(HUVEC-12) cells were investigated.The presented data demonstrated that CEL significantly blocked the morphology change of HUVEC-12 cells induced by TGF-β1 without cell cytotoxicity.In accordance with these findings,CEL blocked TGF-β1-induced EndM T as evidenced by the inhibition of the mesenchymal markers,including collagen Ⅰ,Ⅲ,α-SMA,fibronectin m RNA expression,and the increase in the m RNA expression of endothelial cell marker CD31.These changes were also confirmed by double immunofluorescence staining of CD31 and vimentin.The in vitro scratch assay showed that CEL inhibited the migration capacity of the transitioned endothelial cells induced by TGF-β1.Further experiments showed that the beneficial effect of CEL on blocking the End MT in HUVEC-12 cells was associated with the suppression of the TGF-β1/Smads signalling pathway,which was also confirmed by the inhibition of its downstream transcription factor snail1,twist1,twist2,ZEB1 and ZEB2.These results indicate that CEL blocks TGF-β1-induced End MT through TGF-β1/Smads signalling pathway and suggest that it may be a feasible therapy for cardiac fibrosis diseases.