The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was ca...The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was carried out with the main attention to the infrared emissivity in the band of 8 similar to 14 mu m at room temperature, the microstructure of the ceramics and the relation between them. High infrared emissivities exceeding 0.9 in the band of 8 similar to 14 mu m at room temperature were gained in the transitional metal oxide ceramics and the composite system ceramics. It is suggested that the formation of inverse spinels and partially inverse spinels, such as Fe3O4, CoFe2O4, CuFe2O4 and CuMn2O4, is beneficial to the enhancement of the infrared emissivity of the transitional metal oxide ceramics. The transitional metal oxides play an important role in determining the infrared emissivity of the composite system ceramics.展开更多
Economic new normal and the change of industry environment, market environment and competition environment boost the liquor industry to conduct the transitional development. By analyzing the status quo and the motivat...Economic new normal and the change of industry environment, market environment and competition environment boost the liquor industry to conduct the transitional development. By analyzing the status quo and the motivation of transformation of the liquor industry, the liquor business ecosystem is constructed in this paper. And the path of transitional development of liquor industry is proposed based on the type division of liquor business ecosystem. Then we give some countermeasures and suggestions to improve transitional development of liquor industry from the aspect of liquor business ecosystem, government regulation and the transformation of liquor making company.展开更多
Rising sea-levels in tectonically active epicontinental basins often lead to varied depositional settings and palaeogeography, mostly influenced by the net accommodation resulting from mutual interference of the exten...Rising sea-levels in tectonically active epicontinental basins often lead to varied depositional settings and palaeogeography, mostly influenced by the net accommodation resulting from mutual interference of the extent and nature of landward encroachment by the sea and the net sedimentation. The Cenomanian Nimar Sandstone Formation, Bagh Group, Narmada rift basin, uniquely portrays the effect of sea-level rise within an intra-cratonic setting and attributes to the corresponding palaeogeographic changes in west-central India. An integrated sedimentological–sequence-stratigraphic study of the broadly fining-upward Nimar Sandstone Formation(thickness~ 20–30 m) depicts the actual nature of changeover from a fluvial to a marine-dominated transitional depositional setting. Detailed sedimentological study reveals total seventeen facies, grouped in five facies associations, viz., the channel-fill facies association(FA-1), the overbank facies association(FA-2), the fluvial-dominated fluvio-tidal facies association(FA-3), the tide-dominated fluvio-tidal facies association(FA-4), and the shoreface facies association(FA-5). Overall facies architecture indicates a west-to-eastward marine encroachment, resulting in stacking of three distinct palaeo-depositional conditions:(i) an initial fluvial system with channel and overbank, changing into a tideinfluenced fluvial bay-head delta in the inner estuary, followed by(ii) marine encroachment leading to a tidedominated central estuary with inter-to sub-tidal settings, and finally,(iii) with further intense marine encroachments, a wave-reworked open shore condition in the outer estuary zone. The overall fining-up succession with a systematic change from fluvial to marine-dominated depositional systems points to a landward shift of the shoreline, signifying a major transgressive event correlated to the Cenomanian global sea-level rise. Characteristic stratal stacking patterns point to four coarsening-and fining-up hemicycles, embedded within the major transgressive succession. These high-frequency cycles attest to the varied interplay of sedimentation, tectonics and sea-level changes, and the resultant net accommodations. A palaeogeographic model is proposed based on the high-frequency transgressive–regressive hemicycles, which envisages the evolution of the depositional environments in relation to the Cenomanian eustatic rise in the intra-cratonic riftogenic fluvio-marine transitional basinal setup.展开更多
The pursuit of improved quality of life standards has significantly influenced the contemporary mining model in the 21st century.This era is witnessing an unprecedented transformation driven by pressing concerns relat...The pursuit of improved quality of life standards has significantly influenced the contemporary mining model in the 21st century.This era is witnessing an unprecedented transformation driven by pressing concerns related to sustainability,climate change,the just energy transition,dynamic operating environments,and complex social challenges.Such transitions present both opportunities and obstacles.The aim of this study is to provide an extensive literature review on energy transition to identify the challenges and strategies associated with navigating transformations in energy systems.Understanding these transformations is particularly critical in the face of the severe consequences of global warming,where an accelerated energy transition is viewed as a universal remedy.Adopting a socio-technological systems perspective,specifically through the application of Actor Network Theory(ANT),this research provides a theoretical foundation while categorising challenges into five distinct domains and outlining strategies across these different dimensions.These insights are specifically tailored for emerging market countries to effectively navigate energy transition while fostering the development of resilient societies.Furthermore,our findings highlight that energy transition encompasses more than a mere technological shift;it entails fundamental changes in various systemic socio-economic imperatives.Through focusing on the role of social structures in transitions,this study makes a significant and innovative contribution to ANT,which has historically been criticised for its limited acknowledgement of social structures.Consequently,we propose an emerging market energy transition framework,which not only addresses technological aspects,but also integrates social considerations.This framework paves the way for future research and exploration of energy transition dynamics.The outcomes of this study offer valuable insights to policymakers,researchers,and practitioners engaged in the mining industry,enabling them to comprehend the multifaceted challenges involved and providing practical strategies for effective resolution.Through incorporating the social dimension into the analysis,we enhance the understanding of the complex nature of energy system transformations,facilitating a more holistic approach towards achieving sustainable and resilient energy transitions in emerging markets and beyond.展开更多
Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marin...Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marine-continental transitional(MCT)shales is still ambiguous.In this study,a method of combining experimental data with analytical models was used to investigate the methane adsorption characteristics and GSC of MCT shales collected from the Qinshui Basin,China.The Ono-Kondo model was used to fit the adsorption data to obtain the adsorption parameters.Subsequently,the geological model of GSC based on pore evolution was constructed using a representative shale sample with a total organic carbon(TOC)content of 1.71%,and the effects of reservoir pressure coefficient and water saturation on GSC were explored.In experimental results,compared to the composition of the MCT shale,the pore structure dominates the methane adsorption,and meanwhile,the maturity mainly governs the pore structure.Besides,maturity in the middle-eastern region of the Qinshui Basin shows a strong positive correlation with burial depth.The two parameters,micropore pore volume and non-micropore surface area,induce a good fit for the adsorption capacity data of the shale.In simulation results,the depth,pressure coefficient,and water saturation of the shale all affect the GSC.It demonstrates a promising shale gas potential of the MCT shale in a deeper block,especially with low water saturation.Specifically,the economic feasibility of shale gas could be a major consideration for the shale with a depth of<800 m and/or water saturation>60%in the Yushe-Wuxiang area.This study provides a valuable reference for the reservoir evaluation and favorable block search of MCT shale gas.展开更多
Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory...Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.展开更多
The paleoenvironment of shales can be reconstructed to some extent using the combinations or concentrations of elements that correlate strongly with environmental conditions.In this study,we analyzed rare earth elemen...The paleoenvironment of shales can be reconstructed to some extent using the combinations or concentrations of elements that correlate strongly with environmental conditions.In this study,we analyzed rare earth elements(REEs),major elements,and trace elements in the marine-continental transitional shales(transitional shales for short)of the Shan 2^(3)submember of the Shanxi Formation in the southeastern Ordos Basin.The purpose is to deduce the paleoenvironmental conditions of the shales,encompassing paleoredox,paleoclimate,paleoproductivity,and paleo-provenance.The Shan 2^(3)submember comprises four sections,namely Shan 2^(3)-1,Shan 2^(3)-2,Shan 2^(3)-3,and Shan 2^(3)-4.The Ba/Al,P/Al,and Cu/Al ratios,along with biogenic barium(Babio),indicate that the paleoproductivity of the submember peaked during the Shan 2^(3)-1 deposition and exhibited a downtrend upward in other sections.Trends in the Uau and the Ni/Co,V/Cr,U/Th,and V/Sc ratios suggest that suboxic conditions prevailed during the Shan 2^(3)-1 deposition,with the oxidation level gradually increasing from Shan 2^(3)-1 to Shan 2^(3)-4.C-value and the Sr/Cu vs.Ga/Rb cross-plot indicate a warm and arid paleoclimate during the Shan 2^(3)-1 deposition,which transitioned to cooler,drier conditions during the deposition of other sections.Indicators sensitive to paleoclimate,such as the K/Rb and Th/U ratios,along with the ICV,PIA,and Chemical Index of Alteration(CIA),highlight elevated weathering from Shan 2^(3)-2 to Shan 2^(3)-4,with Shan 2^(3)-1 exhibiting the weakest weathering during its deposition.As suggested by the REE data,the Zr/Sc vs.Th/Sr cross-plot,provenance discriminant functions,and the cross-plots of Hf vs.La/Th,Th vs.Hf-Co,and∑REE vs.La/Yb,the sedimentary provenance for the transitional shales of the Shan 2^(3)submember is of multiple origins,with significant contributions from the Upper Continental Crust(UCC).Discriminant diagrams,including those of Th-Co-Zr/10,Th-Sc-Zr/10,La-Th-Sc,and K_(2)O/Na_(2)O vs.SiO_(2),suggest that the transitional shales of the Shan 2^(3)submember were primarily deposited under tectonic settings such as continental island arcs(CIAs)and passive continental margins(PCMs).展开更多
Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest m...Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest management effects on the multifunctionality remain unclear,especially for natural mixed forests.In this study,our objective is to address this gap by utilizing simulations of climate-sensitive transition matrix growth models based on national forest inventory plot data.We evaluated the effects of seven management scenarios(combinations of various cutting methods and intensities)on the future provision of ecosystem services and multifunctionality in mixed conifer-broad-leaved forests in northeastern China,under four climate scenarios(SSP1-2.6,SSP2-4.5,SSP5-8.5,and constant climate).Provisioning,regulating,cultural,and supporting services were described by timber production,carbon storage,carbon sequestration,tree species diversity,deadwood volume,and the number of large living trees.Our findings indicated that timber production was significantly influenced by management scenarios,while tree species diversity,deadwood volume,and large living trees were impacted by both climate and management separately.Carbon storage and sequestration were notably influenced by both management and the interaction of climate and management.These findings emphasized the profound impact of forest management on ecosystem services,outweighing that of climate scenarios alone.We found no single management scenario maximized all six ecosystem service indicators.The upper story thinning by 5%intensity with 5-year interval(UST5)management strategy emerged with the highest multifunctionality,surpassing the lowest values by more than 20%across all climate scenarios.In conclusion,our results underlined the potential of climate-sensitive transition matrix growth models as a decision support tool and provided recommendations for long-term strategies for multifunctional forest management under future climate change context.Ecosystem services and multifunctionality of forests could be enhanced by implementing appropriate management measures amidst a changing climate.展开更多
Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This s...Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This study is based on developing a safer laser driven flyer plate prototype comprised of a laser initiator and a flyer plate subsystem that can be used with secondary explosives.System parameters were optimized to initiate the shock-to-detonation transition(SDT)of a secondary explosive based on the impact created by the flyer plate on the explosive surface.Rupture of the flyer was investigated at the mechanically weakened region located on the interface of these subsystems,where the product gases from the deflagration of the explosive provide the required energy.A bilayer energetic material was used,where the first layer consisted of a pyrotechnic component,zirconium potassium perchlorate(ZPP),for sustaining the ignition by the laser beam and the second layer consisted of an insensitive explosive,cyclotetramethylene-tetranitramine(HMX),for deflagration.A plexiglass interface was used to enfold the energetic material.The focal length of the laser beam from the diode was optimized to provide a homogeneous beam profile with maximum power at the surface of the ZPP.Closed bomb experiments were conducted in an internal volume of 10 cm^(3) for evaluation of performance.Dependency of the laser driven flyer plate system output on confinement,explosive density,and laser beam power were analyzed.Measurements using a high-speed camera resulted in a flyer velocity of 670±20 m/s that renders the prototype suitable as a laser detonator in applications,where controlled employment of explosives is critical.展开更多
Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,incl...Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,including real-time availability,sparsity,and high-dimensionality issues,and the impact of the pandemic.Consequently,this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network(PAG-STAN)for metro OD demand prediction under pandemic conditions.Specifically,PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices.Subsequently,a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices.Thereafter,PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic.Finally,a masked physics-guided loss function(MPG-loss function)incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability.PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios,highlighting its robustness and sensitivity for metro OD demand prediction.A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN.展开更多
Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti...Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.展开更多
Objective Overweight and obesity prevalence has increased in low-income countries.This study systematically reviewed the obesity trend,disparities,and prevention and control efforts in Nepal.Methods We searched PubMed...Objective Overweight and obesity prevalence has increased in low-income countries.This study systematically reviewed the obesity trend,disparities,and prevention and control efforts in Nepal.Methods We searched PubMed and Google Scholar for articles and reports published between January 1,2004 and December 31,2022.Additional information on National policies and programs related to obesity prevention was retrieved from governmental websites and consultation with relevant experts.Overweight and obesity were defined using the World Health Organization body mass index cut points.Thirty-two studies and reports were included.Results Overall,overweight and obesity rates increased in all groups in Nepal although nationally representative data remained limited.The combined overweight and obesity(OW/OB)and obesity rates in women aged 15-49 years increased from 8.5%to 22.2%and from 0.9%to 5.1%between 2006 and 2016,respectively.OW/OB and obesity rates in men were 17.1%and 2.5%based on data from the 2016 Demographic and Health Survey.OW/OB rate in under-five children increased from 0.6%to 2.8%between 2006 and 2016.Obesity rates for school-age(5-9 years)boys and girls in 2016 were 2.4%and 2.8%,respectively,and were 1.1%and 1.4%for male and female adolescents aged 10-19 years,respectively.OW/OB prevalence was much higher among women,residents in urban areas and central provinces,and in higher socioeconomic status groups.Projected prevalence of OW/OB and obesity for 2030 in adults aged 15-49 was 44.7%and 8.3%,respectively,while it was 2.2%for OW/OB in preschool children.Policies and direct interventions that specifically focused on obesity prevention and control are limited.Conclusions OW/OB prevalence in Nepal has increased during the past 1.8 decades,disproportionately affecting population groups.Existing interventions mostly focused on undernutrition with some indirect implications for obesity prevention.In the future,Nepal needs to develop population-based programs for obesity prevention.展开更多
The world is facing dramatic challenges related to environmental sustainability at an accelerating pace.In this context,the field of economic geography(EG)has been playing an important role in understanding both the s...The world is facing dramatic challenges related to environmental sustainability at an accelerating pace.In this context,the field of economic geography(EG)has been playing an important role in understanding both the socioeconomic and technological dimensions of these challenges,as it deals with a variety of complementary notions and perspectives.Departing from this lens,our aim is to explore a conceptual framework that can help us to understand environmental changes relating to multi-dimensional territorial development,notably in eco-nomic contexts where inequality is high,and stratification based on hierarchies regulate social and economic life.Based on the territory concept,we propose the original notion of a hierarchical regional innovation system(HRIS)that emphasises the pervasive role of hierarchies(powers)in regional innovation systems and illustrate its value with evidence and case studies from extant literature on sustainability transitions.The HRIS can help us understand and promote development paths considering the contribution of inclusive eco-innovations(another original conceptual amalgam).Through some empirical cases from other studies in low-carbon transitions,we show the application of the HRIS(and inclusive eco-innovation)framework.In conclusion,we provide incen-tives to explore new regional innovation systems,alongside the HRIS,adapted to different regions worldwide and centred on the inclusiveness of people and places.展开更多
Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Her...Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads.展开更多
Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep ...Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep learning methods to model the real-time status and historical data features of rail vehicle.Based on data mechanism models,it predicts the lifespan of key components,evaluates the health status of the vehicle and achieves intelligent monitoring and diagnosis of rail vehicle.Findings-The actual operation effect of this system shows that it has improved the intelligent level of the rail vehicle monitoring system,which helps operators to monitor the operation of vehicle online,predict potential risks and faults of vehicle and ensure the smooth and safe operation of vehicle.Originality/value-This system improves the efficiency of rail vehicle operation,scheduling and maintenance through intelligent monitoring and diagnosis of rail vehicle.展开更多
Costello syndrome is a rare neurodevelopmental disorder (RASopathy) caused by activating germline mutation in HRAS. Due to ubiquitous HRAS gene expression, Costello Syndrome affects multiple organ systems and individu...Costello syndrome is a rare neurodevelopmental disorder (RASopathy) caused by activating germline mutation in HRAS. Due to ubiquitous HRAS gene expression, Costello Syndrome affects multiple organ systems and individuals are predisposed to cancer. A male patient, at 13 years of age, had a suspicion of two small findings in the bladder after he had a history of dysuria and microscopic hematuria by two urine analyses. Both were completely resected and the pathology revealed Fibroepithelial polyps. The patient was followed up by an ultrasound of the bladder every six months.展开更多
Many cities in the world are aspiring to have a world-class, sustainable public transport system. However, the cost of building new mass transport systems, especially metro projects, is so high it can lead to the post...Many cities in the world are aspiring to have a world-class, sustainable public transport system. However, the cost of building new mass transport systems, especially metro projects, is so high it can lead to the postponement of such projects. New mass transit modes such as Bus Rapid Transit (BRT), Trackless Tram (TT) and suspended systems are continuously emerging. Some of the new emerging modes can deliver high capacity that can be equivalent to Light Rail Transit and Metro Systems but with significantly less cost. This research is meant to develop a comprehensive approach for comparing & assessing several aspects of different mass transit modes. Different research tools, including in-depth literature review, content, and case study analysis, multicriteria assessment, benchmarking and efficiency analysis, are used to reach conclusions for optimum mass transit options from different perspectives.展开更多
This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Un...This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either 1) f(t)≤0, f′(t)≥0or 2) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.展开更多
Original reference:iEnergy,3(1):46-58,2024 Grid-tie voltage source converters(VSCs)can operate in three distinct modes:AC-dominant,DC-dominant,and balanced,depending on the placement of the stiff voltage sources,as sh...Original reference:iEnergy,3(1):46-58,2024 Grid-tie voltage source converters(VSCs)can operate in three distinct modes:AC-dominant,DC-dominant,and balanced,depending on the placement of the stiff voltage sources,as shown in Figure 1.The distinct operation modes of VSCs typically require different synchronization control techniques.For instance,the grid-following(GFL)control,which utilizes a phase-locked loop to track the AC grid phase and frequency,can be employed for VSCs operating in the AC-dominant mode and the balanced mode.On the other hand,the grid-forming(GFM)control is uti-lized for VSCs operating in the DC-dominant mode and the bal-anced mode.Therefore,neither GFM control nor GFL control can serve as a universal synchronization control technique for VSCs to operate in all of the three modes.While the combination of the GFL VSCs and the GFM VSCs can handle applications that require the VSCs to operate in all of the three modes,effectively accommodating and coordinating the heterogeneous GFL and GFM VSCs remains challenging for power systems.展开更多
Under the pressure of environmental issues,decarbonization of the entire energy system has emerged as a prevalent strategy worldwide.The evolution of China’s power system will increasingly emphasize the integration o...Under the pressure of environmental issues,decarbonization of the entire energy system has emerged as a prevalent strategy worldwide.The evolution of China’s power system will increasingly emphasize the integration of variable renewable energy(VRE).However,the rapid growth of VRE will pose substantial challenges to the power system,highlighting the importance of power system planning.This letter introduces Grid Optimal Planning Tool(GOPT),a planning tool,and presents the key findings of our research utilizing GOPT to analyze the transition pathway of China’s power system towards dual carbon goals.Furthermore,the letter offers insights into key technologies essential for driving the future transition of China’s power system.展开更多
基金The research is supported by the Foundation for Excellent Youth of Wuhan Science and Technology Commission and Opening Foundation of Stae Key Laboratory of Advanced Technology for Materials Synthesis and Process of Wuhan University of Technology.
文摘The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was carried out with the main attention to the infrared emissivity in the band of 8 similar to 14 mu m at room temperature, the microstructure of the ceramics and the relation between them. High infrared emissivities exceeding 0.9 in the band of 8 similar to 14 mu m at room temperature were gained in the transitional metal oxide ceramics and the composite system ceramics. It is suggested that the formation of inverse spinels and partially inverse spinels, such as Fe3O4, CoFe2O4, CuFe2O4 and CuMn2O4, is beneficial to the enhancement of the infrared emissivity of the transitional metal oxide ceramics. The transitional metal oxides play an important role in determining the infrared emissivity of the composite system ceramics.
基金supported by the philosophy and social sciences planning project of Sichuan province(Grant No.SC14E047)the bidding project of Key Research Base of Philosophy and Social Sciences in Sichuan Province-Research Center for Sichuan Liquor Industry Development(Grant No.CJZB15-02)Luzhou Laojiao Co.,Ltd Scientific Research Scholarship Program(Grant No.15ljsk04)
文摘Economic new normal and the change of industry environment, market environment and competition environment boost the liquor industry to conduct the transitional development. By analyzing the status quo and the motivation of transformation of the liquor industry, the liquor business ecosystem is constructed in this paper. And the path of transitional development of liquor industry is proposed based on the type division of liquor business ecosystem. Then we give some countermeasures and suggestions to improve transitional development of liquor industry from the aspect of liquor business ecosystem, government regulation and the transformation of liquor making company.
基金Authors are thankful to the Ministry of Earth Sciences,Government of India,for financial support in the form of Extra-Mural Research Project(Ref.No.Mo ES/P.O.(Geo)/142/2017)。
文摘Rising sea-levels in tectonically active epicontinental basins often lead to varied depositional settings and palaeogeography, mostly influenced by the net accommodation resulting from mutual interference of the extent and nature of landward encroachment by the sea and the net sedimentation. The Cenomanian Nimar Sandstone Formation, Bagh Group, Narmada rift basin, uniquely portrays the effect of sea-level rise within an intra-cratonic setting and attributes to the corresponding palaeogeographic changes in west-central India. An integrated sedimentological–sequence-stratigraphic study of the broadly fining-upward Nimar Sandstone Formation(thickness~ 20–30 m) depicts the actual nature of changeover from a fluvial to a marine-dominated transitional depositional setting. Detailed sedimentological study reveals total seventeen facies, grouped in five facies associations, viz., the channel-fill facies association(FA-1), the overbank facies association(FA-2), the fluvial-dominated fluvio-tidal facies association(FA-3), the tide-dominated fluvio-tidal facies association(FA-4), and the shoreface facies association(FA-5). Overall facies architecture indicates a west-to-eastward marine encroachment, resulting in stacking of three distinct palaeo-depositional conditions:(i) an initial fluvial system with channel and overbank, changing into a tideinfluenced fluvial bay-head delta in the inner estuary, followed by(ii) marine encroachment leading to a tidedominated central estuary with inter-to sub-tidal settings, and finally,(iii) with further intense marine encroachments, a wave-reworked open shore condition in the outer estuary zone. The overall fining-up succession with a systematic change from fluvial to marine-dominated depositional systems points to a landward shift of the shoreline, signifying a major transgressive event correlated to the Cenomanian global sea-level rise. Characteristic stratal stacking patterns point to four coarsening-and fining-up hemicycles, embedded within the major transgressive succession. These high-frequency cycles attest to the varied interplay of sedimentation, tectonics and sea-level changes, and the resultant net accommodations. A palaeogeographic model is proposed based on the high-frequency transgressive–regressive hemicycles, which envisages the evolution of the depositional environments in relation to the Cenomanian eustatic rise in the intra-cratonic riftogenic fluvio-marine transitional basinal setup.
基金University of the Witwatersrand Additional funding is from the DSI-National Research Foundation(NRF)Thuthuka Grant(Grant UID:121973)and DSI-NRF CIMERA.
文摘The pursuit of improved quality of life standards has significantly influenced the contemporary mining model in the 21st century.This era is witnessing an unprecedented transformation driven by pressing concerns related to sustainability,climate change,the just energy transition,dynamic operating environments,and complex social challenges.Such transitions present both opportunities and obstacles.The aim of this study is to provide an extensive literature review on energy transition to identify the challenges and strategies associated with navigating transformations in energy systems.Understanding these transformations is particularly critical in the face of the severe consequences of global warming,where an accelerated energy transition is viewed as a universal remedy.Adopting a socio-technological systems perspective,specifically through the application of Actor Network Theory(ANT),this research provides a theoretical foundation while categorising challenges into five distinct domains and outlining strategies across these different dimensions.These insights are specifically tailored for emerging market countries to effectively navigate energy transition while fostering the development of resilient societies.Furthermore,our findings highlight that energy transition encompasses more than a mere technological shift;it entails fundamental changes in various systemic socio-economic imperatives.Through focusing on the role of social structures in transitions,this study makes a significant and innovative contribution to ANT,which has historically been criticised for its limited acknowledgement of social structures.Consequently,we propose an emerging market energy transition framework,which not only addresses technological aspects,but also integrates social considerations.This framework paves the way for future research and exploration of energy transition dynamics.The outcomes of this study offer valuable insights to policymakers,researchers,and practitioners engaged in the mining industry,enabling them to comprehend the multifaceted challenges involved and providing practical strategies for effective resolution.Through incorporating the social dimension into the analysis,we enhance the understanding of the complex nature of energy system transformations,facilitating a more holistic approach towards achieving sustainable and resilient energy transitions in emerging markets and beyond.
基金jointly supported by the Science and Technology Department of Shanxi Province,China (20201101003)the National Natural Science Foundation of China (U1810201)the China Scholarship Council (202206400012)。
文摘Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marine-continental transitional(MCT)shales is still ambiguous.In this study,a method of combining experimental data with analytical models was used to investigate the methane adsorption characteristics and GSC of MCT shales collected from the Qinshui Basin,China.The Ono-Kondo model was used to fit the adsorption data to obtain the adsorption parameters.Subsequently,the geological model of GSC based on pore evolution was constructed using a representative shale sample with a total organic carbon(TOC)content of 1.71%,and the effects of reservoir pressure coefficient and water saturation on GSC were explored.In experimental results,compared to the composition of the MCT shale,the pore structure dominates the methane adsorption,and meanwhile,the maturity mainly governs the pore structure.Besides,maturity in the middle-eastern region of the Qinshui Basin shows a strong positive correlation with burial depth.The two parameters,micropore pore volume and non-micropore surface area,induce a good fit for the adsorption capacity data of the shale.In simulation results,the depth,pressure coefficient,and water saturation of the shale all affect the GSC.It demonstrates a promising shale gas potential of the MCT shale in a deeper block,especially with low water saturation.Specifically,the economic feasibility of shale gas could be a major consideration for the shale with a depth of<800 m and/or water saturation>60%in the Yushe-Wuxiang area.This study provides a valuable reference for the reservoir evaluation and favorable block search of MCT shale gas.
文摘Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.
基金funded by the Science and Technology Cooper-ation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX030101)the National Natural Science Foundation of China(Grant No.51674044).
文摘The paleoenvironment of shales can be reconstructed to some extent using the combinations or concentrations of elements that correlate strongly with environmental conditions.In this study,we analyzed rare earth elements(REEs),major elements,and trace elements in the marine-continental transitional shales(transitional shales for short)of the Shan 2^(3)submember of the Shanxi Formation in the southeastern Ordos Basin.The purpose is to deduce the paleoenvironmental conditions of the shales,encompassing paleoredox,paleoclimate,paleoproductivity,and paleo-provenance.The Shan 2^(3)submember comprises four sections,namely Shan 2^(3)-1,Shan 2^(3)-2,Shan 2^(3)-3,and Shan 2^(3)-4.The Ba/Al,P/Al,and Cu/Al ratios,along with biogenic barium(Babio),indicate that the paleoproductivity of the submember peaked during the Shan 2^(3)-1 deposition and exhibited a downtrend upward in other sections.Trends in the Uau and the Ni/Co,V/Cr,U/Th,and V/Sc ratios suggest that suboxic conditions prevailed during the Shan 2^(3)-1 deposition,with the oxidation level gradually increasing from Shan 2^(3)-1 to Shan 2^(3)-4.C-value and the Sr/Cu vs.Ga/Rb cross-plot indicate a warm and arid paleoclimate during the Shan 2^(3)-1 deposition,which transitioned to cooler,drier conditions during the deposition of other sections.Indicators sensitive to paleoclimate,such as the K/Rb and Th/U ratios,along with the ICV,PIA,and Chemical Index of Alteration(CIA),highlight elevated weathering from Shan 2^(3)-2 to Shan 2^(3)-4,with Shan 2^(3)-1 exhibiting the weakest weathering during its deposition.As suggested by the REE data,the Zr/Sc vs.Th/Sr cross-plot,provenance discriminant functions,and the cross-plots of Hf vs.La/Th,Th vs.Hf-Co,and∑REE vs.La/Yb,the sedimentary provenance for the transitional shales of the Shan 2^(3)submember is of multiple origins,with significant contributions from the Upper Continental Crust(UCC).Discriminant diagrams,including those of Th-Co-Zr/10,Th-Sc-Zr/10,La-Th-Sc,and K_(2)O/Na_(2)O vs.SiO_(2),suggest that the transitional shales of the Shan 2^(3)submember were primarily deposited under tectonic settings such as continental island arcs(CIAs)and passive continental margins(PCMs).
基金funded by the National Key R&D Program of China(Grant No.2022YFD2200500)the Forestry Public Welfare Scientific Research Project(Grant No.201504303)。
文摘Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest management effects on the multifunctionality remain unclear,especially for natural mixed forests.In this study,our objective is to address this gap by utilizing simulations of climate-sensitive transition matrix growth models based on national forest inventory plot data.We evaluated the effects of seven management scenarios(combinations of various cutting methods and intensities)on the future provision of ecosystem services and multifunctionality in mixed conifer-broad-leaved forests in northeastern China,under four climate scenarios(SSP1-2.6,SSP2-4.5,SSP5-8.5,and constant climate).Provisioning,regulating,cultural,and supporting services were described by timber production,carbon storage,carbon sequestration,tree species diversity,deadwood volume,and the number of large living trees.Our findings indicated that timber production was significantly influenced by management scenarios,while tree species diversity,deadwood volume,and large living trees were impacted by both climate and management separately.Carbon storage and sequestration were notably influenced by both management and the interaction of climate and management.These findings emphasized the profound impact of forest management on ecosystem services,outweighing that of climate scenarios alone.We found no single management scenario maximized all six ecosystem service indicators.The upper story thinning by 5%intensity with 5-year interval(UST5)management strategy emerged with the highest multifunctionality,surpassing the lowest values by more than 20%across all climate scenarios.In conclusion,our results underlined the potential of climate-sensitive transition matrix growth models as a decision support tool and provided recommendations for long-term strategies for multifunctional forest management under future climate change context.Ecosystem services and multifunctionality of forests could be enhanced by implementing appropriate management measures amidst a changing climate.
文摘Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This study is based on developing a safer laser driven flyer plate prototype comprised of a laser initiator and a flyer plate subsystem that can be used with secondary explosives.System parameters were optimized to initiate the shock-to-detonation transition(SDT)of a secondary explosive based on the impact created by the flyer plate on the explosive surface.Rupture of the flyer was investigated at the mechanically weakened region located on the interface of these subsystems,where the product gases from the deflagration of the explosive provide the required energy.A bilayer energetic material was used,where the first layer consisted of a pyrotechnic component,zirconium potassium perchlorate(ZPP),for sustaining the ignition by the laser beam and the second layer consisted of an insensitive explosive,cyclotetramethylene-tetranitramine(HMX),for deflagration.A plexiglass interface was used to enfold the energetic material.The focal length of the laser beam from the diode was optimized to provide a homogeneous beam profile with maximum power at the surface of the ZPP.Closed bomb experiments were conducted in an internal volume of 10 cm^(3) for evaluation of performance.Dependency of the laser driven flyer plate system output on confinement,explosive density,and laser beam power were analyzed.Measurements using a high-speed camera resulted in a flyer velocity of 670±20 m/s that renders the prototype suitable as a laser detonator in applications,where controlled employment of explosives is critical.
基金supported by the National Natural Science Foundation of China(72288101,72201029,and 72322022).
文摘Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,including real-time availability,sparsity,and high-dimensionality issues,and the impact of the pandemic.Consequently,this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network(PAG-STAN)for metro OD demand prediction under pandemic conditions.Specifically,PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices.Subsequently,a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices.Thereafter,PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic.Finally,a masked physics-guided loss function(MPG-loss function)incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability.PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios,highlighting its robustness and sensitivity for metro OD demand prediction.A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN.
基金Project supported by the Scientific Research Foundation for Youth Academic Talent of Inner Mongolia University (Grant No.1000023112101/010)the Fundamental Research Funds for the Central Universities of China (Grant No.JN200208)+2 种基金supported by the National Natural Science Foundation of China (Grant No.11474023)supported by the National Key Research and Development Program of China (Grant No.2021YFA1401803)the National Natural Science Foundation of China (Grant Nos.11974051 and 11734002)。
文摘Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.
基金This study was funded by the research grants from the Key Research and Development Program of Shaanxi Province of China(2022SF-125 and 2021ZDLSF02-14).
文摘Objective Overweight and obesity prevalence has increased in low-income countries.This study systematically reviewed the obesity trend,disparities,and prevention and control efforts in Nepal.Methods We searched PubMed and Google Scholar for articles and reports published between January 1,2004 and December 31,2022.Additional information on National policies and programs related to obesity prevention was retrieved from governmental websites and consultation with relevant experts.Overweight and obesity were defined using the World Health Organization body mass index cut points.Thirty-two studies and reports were included.Results Overall,overweight and obesity rates increased in all groups in Nepal although nationally representative data remained limited.The combined overweight and obesity(OW/OB)and obesity rates in women aged 15-49 years increased from 8.5%to 22.2%and from 0.9%to 5.1%between 2006 and 2016,respectively.OW/OB and obesity rates in men were 17.1%and 2.5%based on data from the 2016 Demographic and Health Survey.OW/OB rate in under-five children increased from 0.6%to 2.8%between 2006 and 2016.Obesity rates for school-age(5-9 years)boys and girls in 2016 were 2.4%and 2.8%,respectively,and were 1.1%and 1.4%for male and female adolescents aged 10-19 years,respectively.OW/OB prevalence was much higher among women,residents in urban areas and central provinces,and in higher socioeconomic status groups.Projected prevalence of OW/OB and obesity for 2030 in adults aged 15-49 was 44.7%and 8.3%,respectively,while it was 2.2%for OW/OB in preschool children.Policies and direct interventions that specifically focused on obesity prevention and control are limited.Conclusions OW/OB prevalence in Nepal has increased during the past 1.8 decades,disproportionately affecting population groups.Existing interventions mostly focused on undernutrition with some indirect implications for obesity prevention.In the future,Nepal needs to develop population-based programs for obesity prevention.
基金support from the Centre of Studies in Geography and Spatial Planning(CEGOT)funded by national funds through the Foundation for Science and Technology(FCT)under the reference UIDB/04084/2020.
文摘The world is facing dramatic challenges related to environmental sustainability at an accelerating pace.In this context,the field of economic geography(EG)has been playing an important role in understanding both the socioeconomic and technological dimensions of these challenges,as it deals with a variety of complementary notions and perspectives.Departing from this lens,our aim is to explore a conceptual framework that can help us to understand environmental changes relating to multi-dimensional territorial development,notably in eco-nomic contexts where inequality is high,and stratification based on hierarchies regulate social and economic life.Based on the territory concept,we propose the original notion of a hierarchical regional innovation system(HRIS)that emphasises the pervasive role of hierarchies(powers)in regional innovation systems and illustrate its value with evidence and case studies from extant literature on sustainability transitions.The HRIS can help us understand and promote development paths considering the contribution of inclusive eco-innovations(another original conceptual amalgam).Through some empirical cases from other studies in low-carbon transitions,we show the application of the HRIS(and inclusive eco-innovation)framework.In conclusion,we provide incen-tives to explore new regional innovation systems,alongside the HRIS,adapted to different regions worldwide and centred on the inclusiveness of people and places.
文摘Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads.
基金supported by Hunan Province Enterprise Technology Innovation and Entrepreneurship Team Support Program Project,Hunan Province Science and Technology Innovation Leading Talent Project[2023RC1088]Hunan Province Science and Technology Talent Support Project[2023TJ-Z10].
文摘Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep learning methods to model the real-time status and historical data features of rail vehicle.Based on data mechanism models,it predicts the lifespan of key components,evaluates the health status of the vehicle and achieves intelligent monitoring and diagnosis of rail vehicle.Findings-The actual operation effect of this system shows that it has improved the intelligent level of the rail vehicle monitoring system,which helps operators to monitor the operation of vehicle online,predict potential risks and faults of vehicle and ensure the smooth and safe operation of vehicle.Originality/value-This system improves the efficiency of rail vehicle operation,scheduling and maintenance through intelligent monitoring and diagnosis of rail vehicle.
文摘Costello syndrome is a rare neurodevelopmental disorder (RASopathy) caused by activating germline mutation in HRAS. Due to ubiquitous HRAS gene expression, Costello Syndrome affects multiple organ systems and individuals are predisposed to cancer. A male patient, at 13 years of age, had a suspicion of two small findings in the bladder after he had a history of dysuria and microscopic hematuria by two urine analyses. Both were completely resected and the pathology revealed Fibroepithelial polyps. The patient was followed up by an ultrasound of the bladder every six months.
文摘Many cities in the world are aspiring to have a world-class, sustainable public transport system. However, the cost of building new mass transport systems, especially metro projects, is so high it can lead to the postponement of such projects. New mass transit modes such as Bus Rapid Transit (BRT), Trackless Tram (TT) and suspended systems are continuously emerging. Some of the new emerging modes can deliver high capacity that can be equivalent to Light Rail Transit and Metro Systems but with significantly less cost. This research is meant to develop a comprehensive approach for comparing & assessing several aspects of different mass transit modes. Different research tools, including in-depth literature review, content, and case study analysis, multicriteria assessment, benchmarking and efficiency analysis, are used to reach conclusions for optimum mass transit options from different perspectives.
文摘This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either 1) f(t)≤0, f′(t)≥0or 2) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.
文摘Original reference:iEnergy,3(1):46-58,2024 Grid-tie voltage source converters(VSCs)can operate in three distinct modes:AC-dominant,DC-dominant,and balanced,depending on the placement of the stiff voltage sources,as shown in Figure 1.The distinct operation modes of VSCs typically require different synchronization control techniques.For instance,the grid-following(GFL)control,which utilizes a phase-locked loop to track the AC grid phase and frequency,can be employed for VSCs operating in the AC-dominant mode and the balanced mode.On the other hand,the grid-forming(GFM)control is uti-lized for VSCs operating in the DC-dominant mode and the bal-anced mode.Therefore,neither GFM control nor GFL control can serve as a universal synchronization control technique for VSCs to operate in all of the three modes.While the combination of the GFL VSCs and the GFM VSCs can handle applications that require the VSCs to operate in all of the three modes,effectively accommodating and coordinating the heterogeneous GFL and GFM VSCs remains challenging for power systems.
基金supported by the National Natural Science Foundation of China(No.52130702,No.52177093)。
文摘Under the pressure of environmental issues,decarbonization of the entire energy system has emerged as a prevalent strategy worldwide.The evolution of China’s power system will increasingly emphasize the integration of variable renewable energy(VRE).However,the rapid growth of VRE will pose substantial challenges to the power system,highlighting the importance of power system planning.This letter introduces Grid Optimal Planning Tool(GOPT),a planning tool,and presents the key findings of our research utilizing GOPT to analyze the transition pathway of China’s power system towards dual carbon goals.Furthermore,the letter offers insights into key technologies essential for driving the future transition of China’s power system.