Differences of gene expression between salinity_stressed and control rice ( Oryza sativa L. ssp. indica ) cultivar “Zhaiyeqing 8' were compared using differential display PCR (DD_PCR) technique. Sequence an...Differences of gene expression between salinity_stressed and control rice ( Oryza sativa L. ssp. indica ) cultivar “Zhaiyeqing 8' were compared using differential display PCR (DD_PCR) technique. Sequence analysis of one salt_inducible cDNA clone revealed that this clone represented a new member of rice translation elongation factor 1A (eEF1A) gene family and was tentatively named REF1A. Northern blot hybridization using REF1A fragment as a probe was performed to investigate the expression of rice translation elongation factor 1A gene in response to various environmental factors. It was observed that expression of the eEF1A gene in rice shoots was dramatically induced by salinity stress or exogenous application of abscisic acid (ABA). The induction of this gene by ABA stress occurred more quickly than that by salinity stress. In addition, expression of rice translation elongation factor 1A gene was also induced by drought (15% PEG6000), cold (4 ℃) or heat_shock (37 ℃) stresses. The results suggested that the induction of translation elongation factor 1A gene expression by environmental stresses might reflect the general adaptive response of rice plants to the adverse circumstances.展开更多
The eukaryotic translation elongation factors (EEFs), i.e. EEF1A1, EEF1A2, EEF1B2, EEF1D, EEF1G, EEF1E1 and EEF2, are coding-genes that play a central role in the elongation step of translation but are often altered i...The eukaryotic translation elongation factors (EEFs), i.e. EEF1A1, EEF1A2, EEF1B2, EEF1D, EEF1G, EEF1E1 and EEF2, are coding-genes that play a central role in the elongation step of translation but are often altered in cancer. Less investigated are their pseudogenes. Recently, it was demonstrated that pseudogenes have a key regulatory role in the cell, especially via non-coding RNAs, and that the aberrant expression of ncRNAs has an important role in cancer development and progression. The present review paper, for the first time, collects all that published about the EEFs pseudogenes to create a base for future investigations. For most of them, the studies are in their infancy, while for others the studies suggest their involvement in normal cell physiology but also in various human diseases. However, more investigations are needed to understand their functions in both normal and cancer cells and to define which can be useful biomarkers or therapeutic targets.展开更多
文摘Differences of gene expression between salinity_stressed and control rice ( Oryza sativa L. ssp. indica ) cultivar “Zhaiyeqing 8' were compared using differential display PCR (DD_PCR) technique. Sequence analysis of one salt_inducible cDNA clone revealed that this clone represented a new member of rice translation elongation factor 1A (eEF1A) gene family and was tentatively named REF1A. Northern blot hybridization using REF1A fragment as a probe was performed to investigate the expression of rice translation elongation factor 1A gene in response to various environmental factors. It was observed that expression of the eEF1A gene in rice shoots was dramatically induced by salinity stress or exogenous application of abscisic acid (ABA). The induction of this gene by ABA stress occurred more quickly than that by salinity stress. In addition, expression of rice translation elongation factor 1A gene was also induced by drought (15% PEG6000), cold (4 ℃) or heat_shock (37 ℃) stresses. The results suggested that the induction of translation elongation factor 1A gene expression by environmental stresses might reflect the general adaptive response of rice plants to the adverse circumstances.
文摘The eukaryotic translation elongation factors (EEFs), i.e. EEF1A1, EEF1A2, EEF1B2, EEF1D, EEF1G, EEF1E1 and EEF2, are coding-genes that play a central role in the elongation step of translation but are often altered in cancer. Less investigated are their pseudogenes. Recently, it was demonstrated that pseudogenes have a key regulatory role in the cell, especially via non-coding RNAs, and that the aberrant expression of ncRNAs has an important role in cancer development and progression. The present review paper, for the first time, collects all that published about the EEFs pseudogenes to create a base for future investigations. For most of them, the studies are in their infancy, while for others the studies suggest their involvement in normal cell physiology but also in various human diseases. However, more investigations are needed to understand their functions in both normal and cancer cells and to define which can be useful biomarkers or therapeutic targets.