Chronic inflammation is known to increase the risk of gastrointestinal cancers(GICs),the common solid tumors worldwide.Precancerous lesions,such as chronic atrophic inflammation and ulcers,are related to inflammatory ...Chronic inflammation is known to increase the risk of gastrointestinal cancers(GICs),the common solid tumors worldwide.Precancerous lesions,such as chronic atrophic inflammation and ulcers,are related to inflammatory responses in vivo and likely to occur in hyperplasia and tumorigenesis.Unfortunately,due to the lack of effective therapeutic targets,the prognosis of patients with GICs is still unsatisfactory.Interestingly,it is found that six transmembrane epithelial antigens of the prostate(STEAPs),a group of metal reductases,are significantly associated with the progression of malignancies,playing a crucial role in systemic metabolic homeostasis and inflammatory responses.The structure and functions of STEAPs suggest that they are closely related to intracellular oxidative stress,responding to inflammatory reactions.Under the imbalance status of abnormal oxidative stress,STEAP members are involved in cell transformation and the development of GICs by inhibiting or activating inflammatory process.This review focuses on STEAPs in GICs along with exploring their potential molecular regulatory mechanisms,with an aim to provide a theoretical basis for diagnosis and treatment strategies for patients suffering from these types of cancers.展开更多
In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein...In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein in bladder cancer(BC)carcinogenesis.Lentiviral vectors were used to achieve silencing or overexpression of TM9SF1 gene in three BC cell lines.These cell lines were then subject to cell counting kit 8,wound-healing assay,transwell assay,and flow cytometry.Proliferation,migration,and invasion of BC cells were increased in cell lines subjected to TM9SF1 overexpression.TM9SF1 silencing inhibited proliferation,migration and invasion of BC cells.The authors conclude that TM9SF1 may be an oncogene in bladder cancer pathogenesis.展开更多
Low sperm motility is one of the main causes of male infertility. Cystic fibrosis transmembrane conductance regulator (CFTR, an anion channel protein) is related to the progressive motility of sperm. CFTR disruptor CF...Low sperm motility is one of the main causes of male infertility. Cystic fibrosis transmembrane conductance regulator (CFTR, an anion channel protein) is related to the progressive motility of sperm. CFTR disruptor CFTRinh-172 or forskolin (FSK) in this study were used to treat human sperm separately, and the rates of sperm autophagy and progressive motility, mitochondrial membrane potential (MMP) and ATP concentration, and the expression levels of related factors were detected to explore their relationship. It was showed that sperms treated with CFTRinh-172 or FSK reduced the levels of cAMP, CFTR and PKA, but increased sperm autophagy rate, expression levels of AMPK and LC3B. However, reactive oxygen species content had no significant difference. It was indicated that low level of CFTR performed with cAMP and its downstream effectors such as PKA and AMPK to regulate mitochondrial structure and function, leading to increased autophagy rate and reduced vitality of sperm.展开更多
Our previous study showed that transmembrane TNF-α (TM-TNF-α) had broader tumoricidal spectrum than secretory TNF-α (s-TNF-α). This study examined the difference between the two kinds of TNF-α in inducing cel...Our previous study showed that transmembrane TNF-α (TM-TNF-α) had broader tumoricidal spectrum than secretory TNF-α (s-TNF-α). This study examined the difference between the two kinds of TNF-α in inducing cells and the relationship between the apoptosis induced by TM-TNF-α and the cell cycle. Bioassay was employed to compare the cytotoxic effect of two kinds of TNF-α on cell lines L-929 and HepG2. TUNEL was used to detect apoptosis and the TdT and PI co-staining were used for determining the phase of apoptotic cells. Our results showed that TM-TNF-α could kill not only s-TNF-sensitive L929 cells but also s-TNF-tolerant HepG2 cells. TM-TNF-α predominantly induced apoptosis while s-TNF could induce both apoptosis and necrosis. The apoptosis of L-929 cells induced by TM-TNF-α mainly occurred in S phase and the apoptosis of HepG2 predominantly took place in G1 phase. It is concluded that the cytotoxic effects of the two TNF differ substantially. Since TM-TNF-α works locally, mainly induces apoptosis and has broader anti-tumor spectrum, it may be more effective for the treatment of tumor than s-TNF.展开更多
This study was aimed to examine the correlation of the cytotoxic effects induced by two types of TNF-α to cell cycle. Hoechst 33342 and PI were used to detect the morphological changes in the cell death induced by th...This study was aimed to examine the correlation of the cytotoxic effects induced by two types of TNF-α to cell cycle. Hoechst 33342 and PI were used to detect the morphological changes in the cell death induced by the two types of TNF-α. TdT and PI co-staining was performed to determine the phase of cell cycle of apoptotic cells. L929 cells in different phases of cell cycle were further synchronized and their sensitivity to the two types of TNF-α was observed. Our results showed that the apoptosis of HepG2 cells triggered by tm-TNF-α mainly occurred in G1 phase while in HL-60, Raji and K562 cell lines it mainly took place in S phase. The apoptosis of L929 cells induced by tm-TNF-α mainly occurred in S phase while the apoptosis induced by s-TNF-α mainly appeared in G1 phase. L929 cells were sensitive to s-TNF-α when synchronized in G1 phase (cytotoxicity 49.8%) while their sensi-tivity to tm-TNF-α was highest in S phase (45.7%) and G1/S phase (cytotoxicity 40.6%). It was concluded that tm-TNF-α-induced apoptosis of different target cells took place in different phases of cell cycle. The apoptosis of the specific cell line induced by the two types of TNF-α occurred in different phases of cell cycle. The sensitivity of the specific cell line to the two types of TNF-α was correlated with the phase of cell cycle.展开更多
To evaluate effect of recombined human tumor necrosis factor (rhTNF- α) on mitochondrial transmembrane potential and motility of human sperm in vitro Methods Semen samples for study were obtained from 40 health men...To evaluate effect of recombined human tumor necrosis factor (rhTNF- α) on mitochondrial transmembrane potential and motility of human sperm in vitro Methods Semen samples for study were obtained from 40 health men (average age 26 ± 1.2 years) with normal semen analysis. Sperm suspension with computer aided of semen analysis (CASA) technique; 2) were stained in the presence of 10 μg/ml Rh123 and PI, mitochondrial transmembrane potential of those was analyzed by flow cytometry (FCM). Results Significant differences were found between experimental groups and control groups on viability, straight line velocity, curvilinear velocity, average path velocity, progressive motility of human sperm and number of sperm with normal mitochondrial transmembrane potential (P〈0.01) expect final concentration 30 pg/ml group (P〉0. 05). Sperm motility lowed with increasing rhTNF-α concentration and incubating time (P〈0. 01). Number of sperm with normal mitochondrial transmembrane potential decreased with increasing rhTNF-α concentration and incubating time (P〈0.01). Conclusion rh TNF-α can decrease human sperm motility function in vitro, which can interfere the function of human sperm mitochondrial transmembrane potential and may inhibit sperm mitochondrial enzymatic activities.展开更多
BACKGROUND The molecular mechanisms of colorectal cancer development and progression are far from being elucidated.AIM To investigate the role of microRNA-363-3p(miR-363-3p)in the progression of colorectal cancer.METH...BACKGROUND The molecular mechanisms of colorectal cancer development and progression are far from being elucidated.AIM To investigate the role of microRNA-363-3p(miR-363-3p)in the progression of colorectal cancer.METHODS Real-time polymerase chain reaction was performed to detect miRNA expression in human colorectal cancer tissues and paired normal colorectal tissues.PITA 6 was utilized to predict the targets of miR-363-3p.Dual-luciferase reporter system was used to validate the target of miR-363-3p.Plate colony formation assay and wound-healing assay were performed to evaluate cancer cells’clonogenic survival ability and migration ability,respectively.Cell proliferation was examined by cell counting kit-8 assay.Immunohistochemical staining was used to determine the expression level of interferon-induced transmembrane protein 1(IFITM1)in colorectal cancer tissues and adjacent tissues.The TCGA and GTEx databases were used to compare the expression levels of IFITM1 mRNA in colorectal cancer tissues and normal colorectal tissues and analyze the correlation between the expression levels of IFITM1 mRNA and overall survival and disease-free survival of patients.A colorectal cancer cell line with a deficiency of IFITM1 was constructed,and the regulation effect of IFITM1 on the clonogenic growth of colorectal cancer cells was clarified.RESULTS MiR-363-3p was decreased in colorectal cancer tissues compared to normal colorectal tissues.IFITM1 was characterized as a direct target of miR-363-3p.Overexpression of miR-363-3p led to decreased clonogenic survival,proliferation,and migration of colorectal cancer cells,which could be reversed by forced IFITM1 expression.CONCLUSION MiR-363-3p can constrain clonogenic survival,proliferation,and migration of colorectal cancer cells via targeting IFITM1.展开更多
基金the National Natural Science Foundation of China,No.82273457the Natural Science Foundation of Guangdong Province,No.2021A1515012180,2023A1515012762 and No.2019A1515010962+1 种基金Special Grant for Key Area Programs of Guangdong Department of Education,No.2021ZDZX2040Science and Technology Special Project of Guangdong Province,No.210715216902829.
文摘Chronic inflammation is known to increase the risk of gastrointestinal cancers(GICs),the common solid tumors worldwide.Precancerous lesions,such as chronic atrophic inflammation and ulcers,are related to inflammatory responses in vivo and likely to occur in hyperplasia and tumorigenesis.Unfortunately,due to the lack of effective therapeutic targets,the prognosis of patients with GICs is still unsatisfactory.Interestingly,it is found that six transmembrane epithelial antigens of the prostate(STEAPs),a group of metal reductases,are significantly associated with the progression of malignancies,playing a crucial role in systemic metabolic homeostasis and inflammatory responses.The structure and functions of STEAPs suggest that they are closely related to intracellular oxidative stress,responding to inflammatory reactions.Under the imbalance status of abnormal oxidative stress,STEAP members are involved in cell transformation and the development of GICs by inhibiting or activating inflammatory process.This review focuses on STEAPs in GICs along with exploring their potential molecular regulatory mechanisms,with an aim to provide a theoretical basis for diagnosis and treatment strategies for patients suffering from these types of cancers.
文摘In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein in bladder cancer(BC)carcinogenesis.Lentiviral vectors were used to achieve silencing or overexpression of TM9SF1 gene in three BC cell lines.These cell lines were then subject to cell counting kit 8,wound-healing assay,transwell assay,and flow cytometry.Proliferation,migration,and invasion of BC cells were increased in cell lines subjected to TM9SF1 overexpression.TM9SF1 silencing inhibited proliferation,migration and invasion of BC cells.The authors conclude that TM9SF1 may be an oncogene in bladder cancer pathogenesis.
文摘Low sperm motility is one of the main causes of male infertility. Cystic fibrosis transmembrane conductance regulator (CFTR, an anion channel protein) is related to the progressive motility of sperm. CFTR disruptor CFTRinh-172 or forskolin (FSK) in this study were used to treat human sperm separately, and the rates of sperm autophagy and progressive motility, mitochondrial membrane potential (MMP) and ATP concentration, and the expression levels of related factors were detected to explore their relationship. It was showed that sperms treated with CFTRinh-172 or FSK reduced the levels of cAMP, CFTR and PKA, but increased sperm autophagy rate, expression levels of AMPK and LC3B. However, reactive oxygen species content had no significant difference. It was indicated that low level of CFTR performed with cAMP and its downstream effectors such as PKA and AMPK to regulate mitochondrial structure and function, leading to increased autophagy rate and reduced vitality of sperm.
基金This project was supported by a grant from the Natural Sciences Foundation of China (No. 39570796)
文摘Our previous study showed that transmembrane TNF-α (TM-TNF-α) had broader tumoricidal spectrum than secretory TNF-α (s-TNF-α). This study examined the difference between the two kinds of TNF-α in inducing cells and the relationship between the apoptosis induced by TM-TNF-α and the cell cycle. Bioassay was employed to compare the cytotoxic effect of two kinds of TNF-α on cell lines L-929 and HepG2. TUNEL was used to detect apoptosis and the TdT and PI co-staining were used for determining the phase of apoptotic cells. Our results showed that TM-TNF-α could kill not only s-TNF-sensitive L929 cells but also s-TNF-tolerant HepG2 cells. TM-TNF-α predominantly induced apoptosis while s-TNF could induce both apoptosis and necrosis. The apoptosis of L-929 cells induced by TM-TNF-α mainly occurred in S phase and the apoptosis of HepG2 predominantly took place in G1 phase. It is concluded that the cytotoxic effects of the two TNF differ substantially. Since TM-TNF-α works locally, mainly induces apoptosis and has broader anti-tumor spectrum, it may be more effective for the treatment of tumor than s-TNF.
基金supported by grants from the National Natural Science Foundation of China (No.30971397No.91029709)
文摘This study was aimed to examine the correlation of the cytotoxic effects induced by two types of TNF-α to cell cycle. Hoechst 33342 and PI were used to detect the morphological changes in the cell death induced by the two types of TNF-α. TdT and PI co-staining was performed to determine the phase of cell cycle of apoptotic cells. L929 cells in different phases of cell cycle were further synchronized and their sensitivity to the two types of TNF-α was observed. Our results showed that the apoptosis of HepG2 cells triggered by tm-TNF-α mainly occurred in G1 phase while in HL-60, Raji and K562 cell lines it mainly took place in S phase. The apoptosis of L929 cells induced by tm-TNF-α mainly occurred in S phase while the apoptosis induced by s-TNF-α mainly appeared in G1 phase. L929 cells were sensitive to s-TNF-α when synchronized in G1 phase (cytotoxicity 49.8%) while their sensi-tivity to tm-TNF-α was highest in S phase (45.7%) and G1/S phase (cytotoxicity 40.6%). It was concluded that tm-TNF-α-induced apoptosis of different target cells took place in different phases of cell cycle. The apoptosis of the specific cell line induced by the two types of TNF-α occurred in different phases of cell cycle. The sensitivity of the specific cell line to the two types of TNF-α was correlated with the phase of cell cycle.
基金This study was supported by education of bureau of hubei province, P. R china
文摘To evaluate effect of recombined human tumor necrosis factor (rhTNF- α) on mitochondrial transmembrane potential and motility of human sperm in vitro Methods Semen samples for study were obtained from 40 health men (average age 26 ± 1.2 years) with normal semen analysis. Sperm suspension with computer aided of semen analysis (CASA) technique; 2) were stained in the presence of 10 μg/ml Rh123 and PI, mitochondrial transmembrane potential of those was analyzed by flow cytometry (FCM). Results Significant differences were found between experimental groups and control groups on viability, straight line velocity, curvilinear velocity, average path velocity, progressive motility of human sperm and number of sperm with normal mitochondrial transmembrane potential (P〈0.01) expect final concentration 30 pg/ml group (P〉0. 05). Sperm motility lowed with increasing rhTNF-α concentration and incubating time (P〈0. 01). Number of sperm with normal mitochondrial transmembrane potential decreased with increasing rhTNF-α concentration and incubating time (P〈0.01). Conclusion rh TNF-α can decrease human sperm motility function in vitro, which can interfere the function of human sperm mitochondrial transmembrane potential and may inhibit sperm mitochondrial enzymatic activities.
文摘BACKGROUND The molecular mechanisms of colorectal cancer development and progression are far from being elucidated.AIM To investigate the role of microRNA-363-3p(miR-363-3p)in the progression of colorectal cancer.METHODS Real-time polymerase chain reaction was performed to detect miRNA expression in human colorectal cancer tissues and paired normal colorectal tissues.PITA 6 was utilized to predict the targets of miR-363-3p.Dual-luciferase reporter system was used to validate the target of miR-363-3p.Plate colony formation assay and wound-healing assay were performed to evaluate cancer cells’clonogenic survival ability and migration ability,respectively.Cell proliferation was examined by cell counting kit-8 assay.Immunohistochemical staining was used to determine the expression level of interferon-induced transmembrane protein 1(IFITM1)in colorectal cancer tissues and adjacent tissues.The TCGA and GTEx databases were used to compare the expression levels of IFITM1 mRNA in colorectal cancer tissues and normal colorectal tissues and analyze the correlation between the expression levels of IFITM1 mRNA and overall survival and disease-free survival of patients.A colorectal cancer cell line with a deficiency of IFITM1 was constructed,and the regulation effect of IFITM1 on the clonogenic growth of colorectal cancer cells was clarified.RESULTS MiR-363-3p was decreased in colorectal cancer tissues compared to normal colorectal tissues.IFITM1 was characterized as a direct target of miR-363-3p.Overexpression of miR-363-3p led to decreased clonogenic survival,proliferation,and migration of colorectal cancer cells,which could be reversed by forced IFITM1 expression.CONCLUSION MiR-363-3p can constrain clonogenic survival,proliferation,and migration of colorectal cancer cells via targeting IFITM1.