期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
BcSDR1 is involved in regulation of glucose transport and cAMP and MAPK signaling pathways in Botrytis cinerea
1
作者 SI He-long ZHANG Kang +5 位作者 LI Bai YUAN Xue-mei ZANG Jin-ping CAO Hong-zhe XING Ji-hong DONG Jin-gao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第9期2628-2640,共13页
Botrytis cinerea is a typical necrotrophic pathogenic fungus that causes severe diseases in a wide range of plant species, leading to significant economic losses. Our previous study showed that BcSDR1 positively regul... Botrytis cinerea is a typical necrotrophic pathogenic fungus that causes severe diseases in a wide range of plant species, leading to significant economic losses. Our previous study showed that BcSDR1 positively regulates growth,development, and pathogenicity of B. cinerea. However, the regulation mechanism of BcSDR1 and the relationship between BcSDR1 and cAMP and MAPK signaling pathways are not well understood. In this study, transcriptome data showed that BcSDR1 is involved in glucose transmembrane transport, signal transduction, secondary metabolism, and other biological processes. BcSDR1 mutant(BCt41) showed remarkably weak sensitivity to cAMP and MAPK signaling pathways specific inhibitors, SQ22536 and U0126, and significantly decreased cAMP content. The key genes of cAMP and MAPK signaling pathways, BcGB1, BcBTP1, BcBOS1, BcRAS1, and BcBMP3 were significantly upregulated,whereas BcPLC1, BcBCG1, BcCDC4, BcSAK1, BcATF1, and BcBAP1 were significantly downregulated(P<0.05).BcSDR1 was obviously upregulated in BcBCG2, BcBCG3, BcPKA1, and BcPKAR RNA interference(RNAi) mutants, but significantly downregulated in BcPKA2, BcBMP1, and BcBMP3 RNAi mutants. Thus, BcBCG2, BcBCG3, BcPKA1, and BcPKAR negatively regulate BcSDR1 expression, whereas BcPKA2, BcBMP1, and BcBMP3 positively regulate BcSDR1expression. 展开更多
关键词 Botrytis cinerea BcSDR1 glucose transmembrane transport cAMP signaling pathway MAPK signaling pathway
下载PDF
Design of Lipophilic Split Aptamers as Artificial Carriers for Transmembrane Transport of Adenosine Triphosphate
2
作者 Qiaoshu Chen Meiling Jian +5 位作者 Hui Chen Bing Zhou Hui Shi Xiaohai Yang Kemin Wang Jianbo Liu 《CCS Chemistry》 CAS 2021年第11期144-153,共10页
Transmembrane transport plays an important role in many physiological functions,and mimicking this biological process in artificial systems has potential applications in biosensing,drug delivery,and bionic science.Her... Transmembrane transport plays an important role in many physiological functions,and mimicking this biological process in artificial systems has potential applications in biosensing,drug delivery,and bionic science.Here,a lipophilic split aptamer was developed as a novel transmembrane carrier for adenosine triphosphate(ATP)transport.The ATP carrier comprises two split aptamer fragments and cholesterol tags,with the split aptamers acting as targetrecognition domains to enhance their specific binding capability and the cholesterol tags as hydrophobic domains to facilitate membrane penetration.Giant unilamellar vesicle experiments demonstrated that the ATP carrier-mediated transmembrane transport was concentration-and time-dependent and showed high transport selectivity.Moreover,the artificial carriers were applicable to living cells and facilitated rapid cell internalization of fluorescencelabeled ATP.Furthermore,carrier-mediated ATP transport into ATP-deficient cells enabled recovery of cellular ATP levels and improved cell viability.This study demonstrated the efficacy of an aptamer nanostructure for designing DNA-based synthetic carriers with high selectivity and flexibility. 展开更多
关键词 DNA aptamer adenosine triphosphate transmembrane transportation artificial carrier mass transportation
原文传递
Unimolecular artificial transmembrane channel with terminal dihydrogen phosphate groups showing transport selectivity for ammonium
3
作者 Jian-Yu Chen Qi Xiao +1 位作者 Harekrushna Behera Jun-Li Hou 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第1期77-80,共4页
A new artificial transmembrane channel molecule bearing dihydrogen phosphate groups has been synthesized.The terminal dihydrogen phosphate groups enable the channel to be highly negatively charged at both ends of the ... A new artificial transmembrane channel molecule bearing dihydrogen phosphate groups has been synthesized.The terminal dihydrogen phosphate groups enable the channel to be highly negatively charged at both ends of the channel structures.The artificial channel could incorporate into the lipid bilayer efficiently under low concentration.The channel displays high NH4+/K+selectivity due to the electrostatic interaction and hydrogen bonding between NH4+and the terminal dihydrogen phosphate groups. 展开更多
关键词 Artificial transmembrane channel Ammonium transport Dihydrogen phosphate arene transmembrane transport Transport selectivity
原文传递
Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in biodegradation process 被引量:3
4
作者 Dong ZHANG 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2014年第3期305-315,共11页
Bioremediation of hydrophobic organic compounds (HOCs) contanlinated soils involves several physicochemical and microbiological interracial processes among the soil-water-microorganism interfaces. The participation ... Bioremediation of hydrophobic organic compounds (HOCs) contanlinated soils involves several physicochemical and microbiological interracial processes among the soil-water-microorganism interfaces. The participation of surfactants facilitates the mass transport of HOCs in both the physicochemical and microbiological interfaces by reducing the interfacial tension. The effects and underlying mechanisms of surfactants on the physi-cochemical desorption of soil-sorbed HOCs have been widely studied. This paper reviewed the progress made in understanding the effects of surfactant on microbiological interlhcial transport of HOCs and the underlying mechanisms, which is vital for a better understanding and control of the mass transfer of HOCs in the biodegradation process. In summary, surfactants affect the microbiological interfacial behaviors of HOCs during three consecutive processes: the soil solution-microorganism sorption, the transmembrane process, and the intracellular metabolism. Surfactant could promote cell sorption of HOCs depending on the compatibility of surfactant hydrophile hydrophilic balance (HLB) with cell surface properties; while the dose ratio between surfactant and biologic mass (membrane lipids) determined the transmembrane processes. Although surfactants cannot easily directly affect the intracellular enzymatic metabolism of HOCs due to the steric hindrace, the presence of surfactants can indirectly enhanced the metabolism by increasing the substrate concentrations. 展开更多
关键词 BIODEGRADATION SORPTION transmembrane transport microbiological interfaces SURFACTANTS
原文传递
Responsive Polymers with Contraction-arisen Helicity and Biomimetic Membrane-spanning Transport Functions
5
作者 MIN Jing ZHANG Chenyang +2 位作者 QI Shuaiwei WANG Liyan DONG Zeyuan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2022年第3期803-808,共6页
Responsive polymers have attracted increasing attention for prospective design of smart materials.The development of multifunctional responsive materials is very dependent on polymeric structures that can be manipulat... Responsive polymers have attracted increasing attention for prospective design of smart materials.The development of multifunctional responsive materials is very dependent on polymeric structures that can be manipulated with the change of microenvironment at the molecular level.Herein,we report a type of responsive coordination polymers(RCPs)consisting of dual phenanthroline-oxadiazole(DPO)units and metal Zn^(2+)ions,which can contract from linear structure into topologically helical structure driven by hydrophobic effect while changing the microenvironment from nonpolar solvent to aqueous media.The symmetry breaking of RCPs was confirmed by circular dichroism(CD)spectra and atomic force microscope(AFM)images,clearly demonstrating the intramolecularly contraction-arisen helicity.Moreover,RCPs can intelligently adapt different microenvironments by changing their conformations,as evidenced by a demonstration of biomimetic lipid bilayer-based vesicle experiments.Furthermore,RCPs show significant concentration-dependent transmembrane transport functions,implying that RCPs are able to span cellular membranes to form channels inside the hydrophobic lipid bilayers.At the same time,the electrophysiological conductance experiments further underpin the biomimetic transport functions and channel-based conduction mechanism of RCPs.This study demonstrates an important paradigm of responsive polymers performing microenvironment-induced conformational change and thereof unique functions,and thus provides valuable insights on the development of functional responsive materials. 展开更多
关键词 Responsive polymer Molecular contraction Symmetry breaking HELICITY transmembrane transport
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部