Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device off...Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.展开更多
In theoty, engineered anomalous transmission in passive materials and waveguide devices can be used to compensate for wavetorm distortions. However, they suffer from inherent dissipation. Recently, active non-Foster e...In theoty, engineered anomalous transmission in passive materials and waveguide devices can be used to compensate for wavetorm distortions. However, they suffer from inherent dissipation. Recently, active non-Foster elements with imaginary immittance monotonically decreasing with frequency have shown important potentials in broadening bandwidths of electromagnetic devices. So far, they are implemented besed on negative impedance convertors (NICs) loaded with Foster devices. This makes them intrinsically one-port elements and thus cannot be used to compensate for distortions of signals. We construct a two-port network with a non-Foster transmission coefticient based on an unconventional use of NICs. Simulation and experiments show that it can compensate for extremely distorted signals. The proposed method can be used to broaden existing applications in different areas such as antennas, circuits and systems, and physical-layer signal processing.展开更多
This paper discusses optical safety issues in distributed Raman amplification systems. Given the extremely high pump powers, network service operators have critical issues for safety. This paper focuses on both "...This paper discusses optical safety issues in distributed Raman amplification systems. Given the extremely high pump powers, network service operators have critical issues for safety. This paper focuses on both " eye-hazard" and " fire-hazards" .展开更多
基金supported by National Natural Science Foundation of China (Grant No.61261017, No.61571143 and No.61561014)Guangxi Natural Science Foundation (2013GXNSFAA019334 and 2014GXNSFAA118387)+3 种基金Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (No.CRKL150112)Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (GXKL0614202, GXKL0614101 and GXKL061501)Sci.and Tech.on Info.Transmission and Dissemination in Communication Networks Lab (No.ITD-U14008/KX142600015)Graduate Student Research Innovation Project of Guilin University of Electronic Technology (YJCXS201523)
文摘Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61771421,61771422,61528014 and 6140139the Zhejiang Provincial Natural Science Foundation under Grant No LY16F010009
文摘In theoty, engineered anomalous transmission in passive materials and waveguide devices can be used to compensate for wavetorm distortions. However, they suffer from inherent dissipation. Recently, active non-Foster elements with imaginary immittance monotonically decreasing with frequency have shown important potentials in broadening bandwidths of electromagnetic devices. So far, they are implemented besed on negative impedance convertors (NICs) loaded with Foster devices. This makes them intrinsically one-port elements and thus cannot be used to compensate for distortions of signals. We construct a two-port network with a non-Foster transmission coefticient based on an unconventional use of NICs. Simulation and experiments show that it can compensate for extremely distorted signals. The proposed method can be used to broaden existing applications in different areas such as antennas, circuits and systems, and physical-layer signal processing.
文摘This paper discusses optical safety issues in distributed Raman amplification systems. Given the extremely high pump powers, network service operators have critical issues for safety. This paper focuses on both " eye-hazard" and " fire-hazards" .