The properties of ultra-short dense dispersion-managed soliton (DBMS) in optical fiber links are investigated. They show some excellent characters, such as, reducing pulse's breathing extent greatly, facing fewer ...The properties of ultra-short dense dispersion-managed soliton (DBMS) in optical fiber links are investigated. They show some excellent characters, such as, reducing pulse's breathing extent greatly, facing fewer mutual interactions and tolerating larger local dispersion. In general, DBMS is more stable than a conventional dispersion-managed soliton in high-capacity systems. Excessively dense dispersion compensation is more suitable for systems with weak nonlinear effect.展开更多
A single channel with a 160-Gb/s optical time-division-multiplexing (OTDM) transmission over 100 km is fabricated. With the help of 500-GHz optical sampling oscilloscopes, the fiber length is adjusted to the order o...A single channel with a 160-Gb/s optical time-division-multiplexing (OTDM) transmission over 100 km is fabricated. With the help of 500-GHz optical sampling oscilloscopes, the fiber length is adjusted to the order of 10 m, which corresponds to the accuracy of 0.4 ps for the dispersion compensation. The dispersion map is optimized for the 100-km transmission link. A completely error-free transmission with the power penalty of 3.6 dB is achieved for 2 h without using forward error correction.展开更多
We demonstrate the transmission of directly modulated 10-Gb/s WDM signals over 320 km of negative dispersion fiber (dispersion: -2.5 ps/km/nm @1550 nm) without dispersion compensation. The results indicate that a regi...We demonstrate the transmission of directly modulated 10-Gb/s WDM signals over 320 km of negative dispersion fiber (dispersion: -2.5 ps/km/nm @1550 nm) without dispersion compensation. The results indicate that a regional metro WDM network could be implemented cost-effectively by using the proposed negative dispersion fiber and direct modulated lasers.展开更多
基金This work was partly supported by the Doctoral Research Fund of Shanxi University and the Youth Science Fund of Shanxi Province.
文摘The properties of ultra-short dense dispersion-managed soliton (DBMS) in optical fiber links are investigated. They show some excellent characters, such as, reducing pulse's breathing extent greatly, facing fewer mutual interactions and tolerating larger local dispersion. In general, DBMS is more stable than a conventional dispersion-managed soliton in high-capacity systems. Excessively dense dispersion compensation is more suitable for systems with weak nonlinear effect.
基金supported by the Natural Science Foundation of Beijing(No.4062027)the National"863"Project of China(Nos.2007AA01Z258 and 2008AA01Z15)the National Natural Science Foundation of China(Nos.60877042 and 60837003)
文摘A single channel with a 160-Gb/s optical time-division-multiplexing (OTDM) transmission over 100 km is fabricated. With the help of 500-GHz optical sampling oscilloscopes, the fiber length is adjusted to the order of 10 m, which corresponds to the accuracy of 0.4 ps for the dispersion compensation. The dispersion map is optimized for the 100-km transmission link. A completely error-free transmission with the power penalty of 3.6 dB is achieved for 2 h without using forward error correction.
文摘We demonstrate the transmission of directly modulated 10-Gb/s WDM signals over 320 km of negative dispersion fiber (dispersion: -2.5 ps/km/nm @1550 nm) without dispersion compensation. The results indicate that a regional metro WDM network could be implemented cost-effectively by using the proposed negative dispersion fiber and direct modulated lasers.