We developed a novel cement evaluation logging tool,named the azimuthally acoustic bond tool(AABT),which uses a phased-arc array transmitter with azimuthal detection capability.We combined numerical simulations and ...We developed a novel cement evaluation logging tool,named the azimuthally acoustic bond tool(AABT),which uses a phased-arc array transmitter with azimuthal detection capability.We combined numerical simulations and field tests to verify the AABT tool.The numerical simulation results showed that the radiation direction of the subarray corresponding to the maximum amplitude of the first arrival matches the azimuth of the channeling when it is behind the casing.With larger channeling size in the circumferential direction,the amplitude difference of the casing wave at different azimuths becomes more evident.The test results showed that the AABT can accurately locate the casing collars and evaluate the cement bond quality with azimuthal resolution at the casing-cement interface,and can visualize the size,depth,and azimuth of channeling.In the case of good casingcement bonding,the AABT can further evaluate the cement bond quality at the cementformation interface with azimuthal resolution by using the amplitude map and the velocity of the formation wave.展开更多
Two small scale acoustic phased arrays with 4 elements have been designed and assembled in the laboratory. Experiments have been carried out with them. It is found that both directivity and radiation lobe width of the...Two small scale acoustic phased arrays with 4 elements have been designed and assembled in the laboratory. Experiments have been carried out with them. It is found that both directivity and radiation lobe width of the phased array can be regulated by changing the time delay between the input signals on neighboring elements. Results measured are in good agreement with those calculated. By using the phased array as an acoustic transmitter and hydrophone as a receiver, small scale acoustic well-logging simulations have been carried out both on an aluminum modei well and on a concrete one. Experimental results show that, by increasing the time delay of the input signals on neighboring elements, the steered radiation angle of the phased array becomes larger and larger, and generation conditions of the refracted compressional wave and the refracted shear wave are reached successively, and the refracted compressional wave, the refracted shear wave and the Stoneley wave are strengthened, respec-tively. Therefore, by choosing element spacing of a phased array and acoustic wave frequency appropriately, the main radiation lobe of the phased array can be widened to cover the first critical angle of all kinds of formations, which makes it possible to apply phased array acoustic well-logging in any formation continuously without regulating directivity of the phased array.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11204380,11374371,61102102,and11134011)National Science and Technology Major Project(No.2011ZX05020-009)+1 种基金China National Petroleum Corporation(Nos.2014B-4011,2014D-4105,and 2014A-3912)PetroChina Innovation Foundation(No.2014D-5006-0307)
文摘We developed a novel cement evaluation logging tool,named the azimuthally acoustic bond tool(AABT),which uses a phased-arc array transmitter with azimuthal detection capability.We combined numerical simulations and field tests to verify the AABT tool.The numerical simulation results showed that the radiation direction of the subarray corresponding to the maximum amplitude of the first arrival matches the azimuth of the channeling when it is behind the casing.With larger channeling size in the circumferential direction,the amplitude difference of the casing wave at different azimuths becomes more evident.The test results showed that the AABT can accurately locate the casing collars and evaluate the cement bond quality with azimuthal resolution at the casing-cement interface,and can visualize the size,depth,and azimuth of channeling.In the case of good casingcement bonding,the AABT can further evaluate the cement bond quality at the cementformation interface with azimuthal resolution by using the amplitude map and the velocity of the formation wave.
文摘Two small scale acoustic phased arrays with 4 elements have been designed and assembled in the laboratory. Experiments have been carried out with them. It is found that both directivity and radiation lobe width of the phased array can be regulated by changing the time delay between the input signals on neighboring elements. Results measured are in good agreement with those calculated. By using the phased array as an acoustic transmitter and hydrophone as a receiver, small scale acoustic well-logging simulations have been carried out both on an aluminum modei well and on a concrete one. Experimental results show that, by increasing the time delay of the input signals on neighboring elements, the steered radiation angle of the phased array becomes larger and larger, and generation conditions of the refracted compressional wave and the refracted shear wave are reached successively, and the refracted compressional wave, the refracted shear wave and the Stoneley wave are strengthened, respec-tively. Therefore, by choosing element spacing of a phased array and acoustic wave frequency appropriately, the main radiation lobe of the phased array can be widened to cover the first critical angle of all kinds of formations, which makes it possible to apply phased array acoustic well-logging in any formation continuously without regulating directivity of the phased array.