期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical simulation of the dimensional transformation of atomization in a supersonic aerodynamic atomization dust-removing nozzle based on transonic speed compressible flow 被引量:7
1
作者 Tian Zhang Deji Jing +3 位作者 Shaocheng Ge Jiren Wang Xiangxi Meng ShuaiShuai Ren 《International Journal of Coal Science & Technology》 EI 2020年第3期597-610,共14页
To simulate the transonic atomization jet process in Laval nozzles,to test the law of droplet atomization and distribution,to find a method of supersonic atomization for dust-removing nozzles,and to improve nozzle eff... To simulate the transonic atomization jet process in Laval nozzles,to test the law of droplet atomization and distribution,to find a method of supersonic atomization for dust-removing nozzles,and to improve nozzle efficiency,the finite element method has been used in this study based on the COMSOL computational fluid dynamics module.The study results showed that the process cannot be realized alone under the two-dimensional axisymmetric,three-dimensional and three-dimensional symmetric models,but it can be calculated with the transformation dimension method,which uses the parameter equations generated from the two-dimensional axisymmetric flow field data of the three-dimensional model.The visualization of this complex process,which is difficult to measure and analyze experimentally,was realized in this study.The physical process,macro phenomena and particle distribution of supersonic atomization are analyzed in combination with this simulation.The rationality of the simulation was verified by experiments.A new method for the study of the atomization process and the exploration of its mechanism in a compressible transonic speed flow field based on the Laval nozzle has been provided,and a numerical platform for the study of supersonic atomization dust removal has been established. 展开更多
关键词 Aerodynamic atomization Dust-removing Laval nozzle Compressible flow field transonic speed Dimension transform
下载PDF
Faster Than Sound, Daredevil Parachute Jumps from the Edge of the Space
2
作者 Seppo Mäkinen 《Advances in Aerospace Science and Technology》 2023年第4期55-67,共13页
This article discusses the kinematics of a parachutist making a very-high-altitude jump. The effect of altitude on the density of air, on the gravitational field strength of the Earth, and on the atmosphere’s tempera... This article discusses the kinematics of a parachutist making a very-high-altitude jump. The effect of altitude on the density of air, on the gravitational field strength of the Earth, and on the atmosphere’s temperature has been taken into account in our analysis. The well-known equations of classical mechanics governing the selected topic have been solved numerically by using the mathematical software Mathcad. Especially, the possibility of a person exceeding the speed of sound during their fall has been considered in our analysis. The effect of the sound barrier is taken into account so that the shape factor of the falling body is given as a speed-dependent function, which reaches its maximum value at Mach 1.0. The obtained results have been found to be highly consistent with the available experimental data on some high-altitude jumps. The data published on the famous jump of Captain Joseph Kittinger has been analyzed very carefully, and although our calculations reproduced the reported values for most parts, some interesting inconsistencies were also discovered. Kittinger jumped from a gondola attached to a helium-filled balloon from a record-high altitude of 102,800 ft, or 31,330 m, in August 1960. We also made numerical analysis on the high-altitude jump of Felix Baumgartner. He bailed out from his gondola at the record-high altitude of 39.0 km in October 2012. 展开更多
关键词 Parachute Jumps Atmosphere Numerical Modelling transonic speeds
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部