The new linac and transport line control system of Hefei Light Source (HLS) is a distributed control sys- tem based on EPICS (Experimental Physics and Industrial Control System). Industrial PC (IPC) is widely used as ...The new linac and transport line control system of Hefei Light Source (HLS) is a distributed control sys- tem based on EPICS (Experimental Physics and Industrial Control System). Industrial PC (IPC) is widely used as not only Input/Output Controller (IOC) but also device controller. Besides industrial PC, PLC and microcontroller are also used as device controllers. The software for industrial PC based device controller is developed based on VxWorks real-time operating system. The software for PLC and microcontroller are written with ladder software package and assemble language, respectively. PC with Linux and SUN workstation with Solaris are used as operator interfaces (OPI). High level control is made up of some EPICS tools and Tcl/Tk scripts.展开更多
In this article, we present the design of the beam transport line and injection system of the compact storage ring for the Tsinghua Thomson scattering X-ray (TTX) source. The layout of the beam transport line fits in ...In this article, we present the design of the beam transport line and injection system of the compact storage ring for the Tsinghua Thomson scattering X-ray (TTX) source. The layout of the beam transport line fits in with the limited available space. The injection system is simplified, consisting of only one single kicker; the stray field on the reference orbit is also reduced without the septum magnet. We choose a travelling wave kicker and present both 2D and 3D simulations for the structure design.展开更多
Based on dynamics of heat conduction, fluid flow caused by heating and chemical material transport induced by fluid flow, temperature and stream fields of fluid flow in ore-forming processes of Cu-Au sulfide in the To...Based on dynamics of heat conduction, fluid flow caused by heating and chemical material transport induced by fluid flow, temperature and stream fields of fluid flow in ore-forming processes of Cu-Au sulfide in the Tongling district deposits was modeled and analyzed. It is shown that: (1) Mass and energy flow caused by fluid flow is key problem of kythrothermal ore-forming processes; the heating from magma intruded is basic power for driving fluid flow. (2) occurrence of pluton, different chemical property and porosity of wall rocks and infiltration restrict the specifically field of precipitation for ore-forming material.Therefore, the dissolution and precipitation field for ore-forming material in deposit can be forecasted. (3) Iron and sulfur material comes mostly from sandstone formation of Wutong Group, which contains pyrite and high porosity. The cataclastic dolomite interlayered in sandstone and limestone is a favorable place for ore accumulating. The difference of chemical property between sandstone and dolomite forms a favorable interface for ore-forming processes.展开更多
It is essential to learn the temporal and spatial concentration distributions and variations of seeding agents in cloud seeding of precipitation enhancement. A three-dimensional puff trajectory model incorporating a m...It is essential to learn the temporal and spatial concentration distributions and variations of seeding agents in cloud seeding of precipitation enhancement. A three-dimensional puff trajectory model incorporating a mesoscale nonhydrostatic model has been formulated, and is applied to simulating the transporting and diffusive characteristics of multiple line sources of seeding agents within super-cooled stratus. Several important factors are taken into consideration that affect the diffusion of seeding materials such as effects of topography and vertical wind shear, temporal and spatial variation of seeding parameters and wet deposition. The particles of seeding agents are assumed to be almost inert, they have no interaction with the particles of the cloud or precipitation except that they are washed out by precipitation. The model validity is demonstrated by the analyses and comparisons of model results, and checked by the sensitivity experiments of diffusive coefficients and atmospheric stratification. The advantage of this model includes not only its exact reflection of heterogeneity and unsteadiness of background fields, but also its good simulation of transport and diffusion of multiple line sources. The horizontal diffusion rate and the horizontal transport distance have been proposed that they usually were difficult to obtain in other models. In this simulation the horizontal diffusion rate is 0.82 m s(-1) for average of one hour, and the horizontal average transport distance reaches 65 km after 1 4 which are closely related to the background Fields.展开更多
Based on the transmission line code TLCODE, a 1D circuit model for a transmission- line impedance transformer was developed and the simulation results were compared with those in the literature. The model was used to ...Based on the transmission line code TLCODE, a 1D circuit model for a transmission- line impedance transformer was developed and the simulation results were compared with those in the literature. The model was used to quantify the efficiencies of voltage-transport, energy- transport and power-transport for a transmission-line impedance transformer as functions of ψ (the ratio of the output impedance to the input impedance of the transformer) and Г (the ratio of the pulse width to the one-way transit time of the transformer) under a large scale of m (the coefficient of the generalized exponential impedance profile). Simulation results suggest that with the increase in Г, from 0 to ∞, the power transport efficiency first increases and then decreases. The maximum power transport efficiency can reach 90% or even higher for an exponential impedance profile (m = 1). With a consideration of dissipative loss in the dielectric and electrodes of the transformer, two representative designs of the water-insulated transformer are investigated for the next generation of petawatt-class z-pinch drivers. It is found that the dissipative losses in the electrodes are negligibly small, below 0.1%, but the dissipative loss in the water dielectric is about 1% to 4%.展开更多
To explore a new way of constructing bioartificial renal tubule assist device (RAD) in vitro and its function of transporting sodium (Na^+) and glucose and to evaluate the application of atomic force microscope i...To explore a new way of constructing bioartificial renal tubule assist device (RAD) in vitro and its function of transporting sodium (Na^+) and glucose and to evaluate the application of atomic force microscope in the RAD construction, rat renal tubular epithelial cell line NRK-52E was cultured in vitro, seeded onto the outer surfaces of hollow fibers in a bioreactor, and then cultured for two weeks to construct RAD. Bioreactor hollow fibers without NRK-52E cells were used as control. The morphologies of attached cells were observed with scanning electron microscope, and the junctions of cells and polysulfone membrane were observed with atomic force microscope. Transportation of Na+ and glucose was measured. Oubaine and phlorizin were used to inhibit the transporting property. The results showed that NRK-52E cells and polysulfone membrane were closely linked, as observed under atomic force microscope. After exposure to oubaine and phlorizin, transporting rates of Na^+ and glucose were decreased significantly in the RAD group as compared with that in the control group (P〈0.01). Furthermore, when the inhibitors were removed, transportation of Na^+ and glucose was restored. It is concluded that a new RAD was constructed successfully in vitro, and it is able to selectively transport Na^+ and glucose.展开更多
[目的]通过总结上海城市轨道交通既有线运能提升改造项目的实施经验,为其提出有效的运能提升方法及具体案例。[方法]深入分析上海轨道交通既有线运能不足的主要原因及其影响因素;基于这些分析,提出运能提升的技术路线及5大核心策略;详...[目的]通过总结上海城市轨道交通既有线运能提升改造项目的实施经验,为其提出有效的运能提升方法及具体案例。[方法]深入分析上海轨道交通既有线运能不足的主要原因及其影响因素;基于这些分析,提出运能提升的技术路线及5大核心策略;详细介绍了上海轨道交通9号线实现1 min 50 s最小行车间隔、3号线与4号线增能改造、5号线从4节编组扩编至6节编组、6号线增能改造及增设复线等成功案例。[结果及结论]影响线路运能的主要因素包括车辆基地规模、区间通过能力、出入场能力,以及供电能力等。针对这些因素,确定了运能提升的技术路线,即从客流预测及客流特征分析入手,进行设施设备能力评估,设计行车交路方案,最终形成科学的改造方案。同时,提出了5大策略:运营管理优化、既有系统能力挖潜及改造、信号系统升级或土建局部改造、系统规模性改造及线网整体优化。展开更多
文摘The new linac and transport line control system of Hefei Light Source (HLS) is a distributed control sys- tem based on EPICS (Experimental Physics and Industrial Control System). Industrial PC (IPC) is widely used as not only Input/Output Controller (IOC) but also device controller. Besides industrial PC, PLC and microcontroller are also used as device controllers. The software for industrial PC based device controller is developed based on VxWorks real-time operating system. The software for PLC and microcontroller are written with ladder software package and assemble language, respectively. PC with Linux and SUN workstation with Solaris are used as operator interfaces (OPI). High level control is made up of some EPICS tools and Tcl/Tk scripts.
基金supported by the National Natural Science Foundation of China (Grant No. 10735050)the National Basic Research Program of China (Grant No. 2007CB815102)
文摘In this article, we present the design of the beam transport line and injection system of the compact storage ring for the Tsinghua Thomson scattering X-ray (TTX) source. The layout of the beam transport line fits in with the limited available space. The injection system is simplified, consisting of only one single kicker; the stray field on the reference orbit is also reduced without the septum magnet. We choose a travelling wave kicker and present both 2D and 3D simulations for the structure design.
文摘Based on dynamics of heat conduction, fluid flow caused by heating and chemical material transport induced by fluid flow, temperature and stream fields of fluid flow in ore-forming processes of Cu-Au sulfide in the Tongling district deposits was modeled and analyzed. It is shown that: (1) Mass and energy flow caused by fluid flow is key problem of kythrothermal ore-forming processes; the heating from magma intruded is basic power for driving fluid flow. (2) occurrence of pluton, different chemical property and porosity of wall rocks and infiltration restrict the specifically field of precipitation for ore-forming material.Therefore, the dissolution and precipitation field for ore-forming material in deposit can be forecasted. (3) Iron and sulfur material comes mostly from sandstone formation of Wutong Group, which contains pyrite and high porosity. The cataclastic dolomite interlayered in sandstone and limestone is a favorable place for ore accumulating. The difference of chemical property between sandstone and dolomite forms a favorable interface for ore-forming processes.
文摘It is essential to learn the temporal and spatial concentration distributions and variations of seeding agents in cloud seeding of precipitation enhancement. A three-dimensional puff trajectory model incorporating a mesoscale nonhydrostatic model has been formulated, and is applied to simulating the transporting and diffusive characteristics of multiple line sources of seeding agents within super-cooled stratus. Several important factors are taken into consideration that affect the diffusion of seeding materials such as effects of topography and vertical wind shear, temporal and spatial variation of seeding parameters and wet deposition. The particles of seeding agents are assumed to be almost inert, they have no interaction with the particles of the cloud or precipitation except that they are washed out by precipitation. The model validity is demonstrated by the analyses and comparisons of model results, and checked by the sensitivity experiments of diffusive coefficients and atmospheric stratification. The advantage of this model includes not only its exact reflection of heterogeneity and unsteadiness of background fields, but also its good simulation of transport and diffusion of multiple line sources. The horizontal diffusion rate and the horizontal transport distance have been proposed that they usually were difficult to obtain in other models. In this simulation the horizontal diffusion rate is 0.82 m s(-1) for average of one hour, and the horizontal average transport distance reaches 65 km after 1 4 which are closely related to the background Fields.
基金supported by National Natural Science Foundation of China(No.50637010)
文摘Based on the transmission line code TLCODE, a 1D circuit model for a transmission- line impedance transformer was developed and the simulation results were compared with those in the literature. The model was used to quantify the efficiencies of voltage-transport, energy- transport and power-transport for a transmission-line impedance transformer as functions of ψ (the ratio of the output impedance to the input impedance of the transformer) and Г (the ratio of the pulse width to the one-way transit time of the transformer) under a large scale of m (the coefficient of the generalized exponential impedance profile). Simulation results suggest that with the increase in Г, from 0 to ∞, the power transport efficiency first increases and then decreases. The maximum power transport efficiency can reach 90% or even higher for an exponential impedance profile (m = 1). With a consideration of dissipative loss in the dielectric and electrodes of the transformer, two representative designs of the water-insulated transformer are investigated for the next generation of petawatt-class z-pinch drivers. It is found that the dissipative losses in the electrodes are negligibly small, below 0.1%, but the dissipative loss in the water dielectric is about 1% to 4%.
文摘To explore a new way of constructing bioartificial renal tubule assist device (RAD) in vitro and its function of transporting sodium (Na^+) and glucose and to evaluate the application of atomic force microscope in the RAD construction, rat renal tubular epithelial cell line NRK-52E was cultured in vitro, seeded onto the outer surfaces of hollow fibers in a bioreactor, and then cultured for two weeks to construct RAD. Bioreactor hollow fibers without NRK-52E cells were used as control. The morphologies of attached cells were observed with scanning electron microscope, and the junctions of cells and polysulfone membrane were observed with atomic force microscope. Transportation of Na+ and glucose was measured. Oubaine and phlorizin were used to inhibit the transporting property. The results showed that NRK-52E cells and polysulfone membrane were closely linked, as observed under atomic force microscope. After exposure to oubaine and phlorizin, transporting rates of Na^+ and glucose were decreased significantly in the RAD group as compared with that in the control group (P〈0.01). Furthermore, when the inhibitors were removed, transportation of Na^+ and glucose was restored. It is concluded that a new RAD was constructed successfully in vitro, and it is able to selectively transport Na^+ and glucose.
文摘[目的]通过总结上海城市轨道交通既有线运能提升改造项目的实施经验,为其提出有效的运能提升方法及具体案例。[方法]深入分析上海轨道交通既有线运能不足的主要原因及其影响因素;基于这些分析,提出运能提升的技术路线及5大核心策略;详细介绍了上海轨道交通9号线实现1 min 50 s最小行车间隔、3号线与4号线增能改造、5号线从4节编组扩编至6节编组、6号线增能改造及增设复线等成功案例。[结果及结论]影响线路运能的主要因素包括车辆基地规模、区间通过能力、出入场能力,以及供电能力等。针对这些因素,确定了运能提升的技术路线,即从客流预测及客流特征分析入手,进行设施设备能力评估,设计行车交路方案,最终形成科学的改造方案。同时,提出了5大策略:运营管理优化、既有系统能力挖潜及改造、信号系统升级或土建局部改造、系统规模性改造及线网整体优化。