Impurity transports in two neighboring discharges with and without electron cyclotron resonance heating(ECRH)are studied in the HL-2A tokamak by laser blow-off(LBO) technique.The progression of aluminium ions as t...Impurity transports in two neighboring discharges with and without electron cyclotron resonance heating(ECRH)are studied in the HL-2A tokamak by laser blow-off(LBO) technique.The progression of aluminium ions as the trace impurity is monitored by soft x-ray(SXR) and bolometer detector arrays with good temporal and spatial resolutions.Obvious difference in the time trace of the signal between the Ohmic and ECRH L-mode discharges is observed.Based on the numerical simulation with one-dimensional(1D) impurity transport code STRAHL,the radial profiles of impurity diffusion coefficient D and convective velocity V are obtained for each shot.The result shows that the diffusion coefficient D significantly increases throughout the plasma minor radius for the ECRH case with respect to the Ohmic case,and that the convection velocity V changes from negative(inward) for the Ohmic case to partially positive(outward) for the ECRH case.The result on HL-2A confirms the pump out effect of ECRH on impurity profile as reported on various other devices.展开更多
Acinetobacter baumannii has greatly increased its degree of resistance to become multidrug resistant (MDR) over the past 30 years and is on the red line of the most widely replicated bacteria according to World Health...Acinetobacter baumannii has greatly increased its degree of resistance to become multidrug resistant (MDR) over the past 30 years and is on the red line of the most widely replicated bacteria according to World Health Organization (WHO). The efflux pumps are the main cause for the increasing antibiotic resistance of A. baumannii originated from nosocomial infection. The progressive resistance of A. baumannii even on the recent drugs (tigecycline and fosfomycin) reduces to very effective antibiotic scale. With attention focused on MDR and pan-drug-resistant (PDR) in A. baumannii multiple works on efflux pumps chemical inhibitor (NMP, PAβN, omeprazole, verapamil, reserpine, CCCP) are still in progress. Certain inhibitors from plants (Biricodar and timcodar, Falvone, Mahonia, Dalea versicolor, Lycopus europaeus, and Rosmarinus officinalis) have the capability to have such compounds according to their very significant synergistic effect with antibiotics. In this review we focused on the growth of antibiotic resistance to explain the mechanism of efflux pumps into these different super families and a comprehensive understanding of the extrusion, regulation and physiology role of drug efflux pumps in the essential development of anti-resistivity drugs. We recapitulated the evolution of the work carried out in these fields during the last years and in the course of elaboration, with the aim of increasing the chances of decreasing bacterial resistivity to antibiotics.展开更多
We numerically investigate the valley-polarized current in symmetric and asymmetric zigzag graphene nanoribbons(ZGNRs) by the adiabatic pump, and the effect of spatial symmetry is considered by introducing different p...We numerically investigate the valley-polarized current in symmetric and asymmetric zigzag graphene nanoribbons(ZGNRs) by the adiabatic pump, and the effect of spatial symmetry is considered by introducing different pumping regions. It is found that pumping potentials with the symmetry Vp(x,y) = Vp(-x,y)can generate the largest valleypolarized current. The valley-polarized currents I13~L with the pumping potential symmetry Vp(x,y) =Vp(x,-y,) and I14~L with Vp(x,y) = Vp(-x,-y) of symmetric ZGNRs are much smaller than those of asymmetric ZGNRs. We also find I13~L and I14~L of symmetric ZGNRs decrease and increase with the increasing pumping amplitude, respectively. Moreover, the dephasing effect from the electron-phonon coupling within the Buttiker dephasing scheme is introduced. The valley-polarized current of the symmetric ZGNRs with Vp(x,y)= Vp(x,-y) increases with the increase of the dephasing strength while that with Vp(x,y) = Vp(-x,-y) decreases as the dephasing strength increases.展开更多
Cells are equipped with mechanisms to control tightly the influx, efflux and resting level of free calcium (Ca 2+ ). Inappropriate Ca 2+ signaling and abnormal Ca 2+ levels are involved in many clinical disorders incl...Cells are equipped with mechanisms to control tightly the influx, efflux and resting level of free calcium (Ca 2+ ). Inappropriate Ca 2+ signaling and abnormal Ca 2+ levels are involved in many clinical disorders including heart disease, Alzheimer's disease and stroke. Ca 2+ also plays a major role in cell growth, differentiation and motility; disturbances in these processes underlie cell transformation and the progression of cancer. Accordingly, research in the Strehler laboratory is focused on a better understanding of the molecular "toolkit" needed to ensure proper Ca 2+ homeostasis in the cell, as well as on the mechanisms of localized Ca 2+ signaling. A longterm focus has been on the plasma membrane calcium pumps (PMCAs), which are linked to multiple disorders including hearing loss, neurodegeneration, and heart disease. Our work over the past 20 years or more has revealed a surprising complexity of PMCA isoforms with different functional characteristics, regulation, and cellular localization. Emerging evidence shows how specific PMCAs contribute not only to setting basal intracellular Ca 2+ levels, but also to local Ca 2+ signaling and vectorial Ca 2+ transport. A second major research arearevolves around the calcium sensor protein calmodulin and an enigmatic calmodulin-like protein (CALML3) that is linked to epithelial differentiation. One of the cellular targets of CALML3 is the unconventional motor protein myosin-10, which raises new questions about the role of CALML3 and myosin-10 in cell adhesion and migration in normal cell differentiation and cancer.展开更多
基金Project partly supported by the National Natural Science Foundation of China(Grant Nos.11375057 and 11175061)the Chinese National Magnetic Confinement Fusion Science Program(Grant No.2014GB108003)
文摘Impurity transports in two neighboring discharges with and without electron cyclotron resonance heating(ECRH)are studied in the HL-2A tokamak by laser blow-off(LBO) technique.The progression of aluminium ions as the trace impurity is monitored by soft x-ray(SXR) and bolometer detector arrays with good temporal and spatial resolutions.Obvious difference in the time trace of the signal between the Ohmic and ECRH L-mode discharges is observed.Based on the numerical simulation with one-dimensional(1D) impurity transport code STRAHL,the radial profiles of impurity diffusion coefficient D and convective velocity V are obtained for each shot.The result shows that the diffusion coefficient D significantly increases throughout the plasma minor radius for the ECRH case with respect to the Ohmic case,and that the convection velocity V changes from negative(inward) for the Ohmic case to partially positive(outward) for the ECRH case.The result on HL-2A confirms the pump out effect of ECRH on impurity profile as reported on various other devices.
文摘Acinetobacter baumannii has greatly increased its degree of resistance to become multidrug resistant (MDR) over the past 30 years and is on the red line of the most widely replicated bacteria according to World Health Organization (WHO). The efflux pumps are the main cause for the increasing antibiotic resistance of A. baumannii originated from nosocomial infection. The progressive resistance of A. baumannii even on the recent drugs (tigecycline and fosfomycin) reduces to very effective antibiotic scale. With attention focused on MDR and pan-drug-resistant (PDR) in A. baumannii multiple works on efflux pumps chemical inhibitor (NMP, PAβN, omeprazole, verapamil, reserpine, CCCP) are still in progress. Certain inhibitors from plants (Biricodar and timcodar, Falvone, Mahonia, Dalea versicolor, Lycopus europaeus, and Rosmarinus officinalis) have the capability to have such compounds according to their very significant synergistic effect with antibiotics. In this review we focused on the growth of antibiotic resistance to explain the mechanism of efflux pumps into these different super families and a comprehensive understanding of the extrusion, regulation and physiology role of drug efflux pumps in the essential development of anti-resistivity drugs. We recapitulated the evolution of the work carried out in these fields during the last years and in the course of elaboration, with the aim of increasing the chances of decreasing bacterial resistivity to antibiotics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11704190,11874221,and 11504240)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20171030)
文摘We numerically investigate the valley-polarized current in symmetric and asymmetric zigzag graphene nanoribbons(ZGNRs) by the adiabatic pump, and the effect of spatial symmetry is considered by introducing different pumping regions. It is found that pumping potentials with the symmetry Vp(x,y) = Vp(-x,y)can generate the largest valleypolarized current. The valley-polarized currents I13~L with the pumping potential symmetry Vp(x,y) =Vp(x,-y,) and I14~L with Vp(x,y) = Vp(-x,-y) of symmetric ZGNRs are much smaller than those of asymmetric ZGNRs. We also find I13~L and I14~L of symmetric ZGNRs decrease and increase with the increasing pumping amplitude, respectively. Moreover, the dephasing effect from the electron-phonon coupling within the Buttiker dephasing scheme is introduced. The valley-polarized current of the symmetric ZGNRs with Vp(x,y)= Vp(x,-y) increases with the increase of the dephasing strength while that with Vp(x,y) = Vp(-x,-y) decreases as the dephasing strength increases.
基金Supported by The National Institutes of Health (NS51769)the Mayo Foundation for Education and Research
文摘Cells are equipped with mechanisms to control tightly the influx, efflux and resting level of free calcium (Ca 2+ ). Inappropriate Ca 2+ signaling and abnormal Ca 2+ levels are involved in many clinical disorders including heart disease, Alzheimer's disease and stroke. Ca 2+ also plays a major role in cell growth, differentiation and motility; disturbances in these processes underlie cell transformation and the progression of cancer. Accordingly, research in the Strehler laboratory is focused on a better understanding of the molecular "toolkit" needed to ensure proper Ca 2+ homeostasis in the cell, as well as on the mechanisms of localized Ca 2+ signaling. A longterm focus has been on the plasma membrane calcium pumps (PMCAs), which are linked to multiple disorders including hearing loss, neurodegeneration, and heart disease. Our work over the past 20 years or more has revealed a surprising complexity of PMCA isoforms with different functional characteristics, regulation, and cellular localization. Emerging evidence shows how specific PMCAs contribute not only to setting basal intracellular Ca 2+ levels, but also to local Ca 2+ signaling and vectorial Ca 2+ transport. A second major research arearevolves around the calcium sensor protein calmodulin and an enigmatic calmodulin-like protein (CALML3) that is linked to epithelial differentiation. One of the cellular targets of CALML3 is the unconventional motor protein myosin-10, which raises new questions about the role of CALML3 and myosin-10 in cell adhesion and migration in normal cell differentiation and cancer.