We investigate the electronic transport properties of dipyrimidinyl-diphenyl sandwiched between two armchair graphene nanoribbon electrodes using the nonequilibrium Green function formalism combined with a first-princ...We investigate the electronic transport properties of dipyrimidinyl-diphenyl sandwiched between two armchair graphene nanoribbon electrodes using the nonequilibrium Green function formalism combined with a first-principles method based on density functional theory. Among the three models M1–M3, M1 is not doped with a heteroatom. In the left parts of M2 and M3, nitrogen atoms are doped at two edges of the nanoribbon. In the right parts, nitrogen atoms are doped at one center and at the edges of M2 and M3, respectively. Comparisons of M1, M2 and M3 show obvious rectifying characteristics, and the maximum rectification ratios are up to 42.9 in M2. The results show that the rectifying behavior is strongly dependent on the doping position of electrodes. A higher rectification ratio can be found in the dipyrimidinyl-diphenyl molecular device with asymmetric doping of left and right electrodes, which suggests that this system has a broader application in future logic and memory devices.展开更多
In the transport studies of topological insulators, microflakes exfoliated from bulk single crystals are often used because of the convenience in sample preparation and the accessibility to high carrier mobilities. He...In the transport studies of topological insulators, microflakes exfoliated from bulk single crystals are often used because of the convenience in sample preparation and the accessibility to high carrier mobilities. Here, based on finite element analysis, we show that for the non-Hall-bar shaped topological insulator samples, the measured four-point resistances can be substantially modified by the sample geometry, bulk and surface resistivities,and magnetic field. Geometry correction factors must be introduced for accurately converting the four-point resistances to the longitudinal resistivity and Hall resistivity. The magnetic field dependence of inhomogeneous current density distribution can lead to pronounced positive magnetoresistance and nonlinear Hall effect that would not exist in the samples of ideal Hall bar geometry.展开更多
There has been an increasing demand for high-performance and cost-effective organic electron-transport materials for organic light-emitting diodes (OLEDs). In this contribution, we present a simple compound 3-(3-(...There has been an increasing demand for high-performance and cost-effective organic electron-transport materials for organic light-emitting diodes (OLEDs). In this contribution, we present a simple compound 3-(3-(4,6-diphenyl-l,3,5-triazin-2-yl)phenyl)-1,10-phenanthroline through the facile Pd-catalyzed coupling of a triphenyltriazine boronic ester with 3-hromo-1,10-phenanthroline. It shows a high Tg of 112℃. The ultraviolet photoelectron spectroscopy measurements reveal a deep HOMO level of -6.5 eV. The LUMO level is derived as -3.0 eV, based on the optical bandgap. The low-temperature solid-state phosphorescent spectrum gives a triplet energy of -2.36eV. n-Doping with 8-hydroxyquinolatolithium (Liq, 1:1) leads to considerably improved electron mobility of 5.2 × 10 -6 -5.8 × 10 -5 cm2 v-1 S-1 at E=(2-5) × 10 5Vcm -1, in contrast with the triarylphosphine oxide- phenantroline molecular conjugate we reported previously. It has been shown that through optimizing the device structure and hence suppressing polaron-exciton annihilation, introducing this single Liq-doped electron-transport layer could offer high-efficiency and stable phosphorescent OLEDs.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11504283 and 21503153the Natural Science Foundation of Shaanxi Province under Grant No 2014JM1025the Science and Technology Star Project of Shaanxi Province under Grant No 2016KJXX-45
文摘We investigate the electronic transport properties of dipyrimidinyl-diphenyl sandwiched between two armchair graphene nanoribbon electrodes using the nonequilibrium Green function formalism combined with a first-principles method based on density functional theory. Among the three models M1–M3, M1 is not doped with a heteroatom. In the left parts of M2 and M3, nitrogen atoms are doped at two edges of the nanoribbon. In the right parts, nitrogen atoms are doped at one center and at the edges of M2 and M3, respectively. Comparisons of M1, M2 and M3 show obvious rectifying characteristics, and the maximum rectification ratios are up to 42.9 in M2. The results show that the rectifying behavior is strongly dependent on the doping position of electrodes. A higher rectification ratio can be found in the dipyrimidinyl-diphenyl molecular device with asymmetric doping of left and right electrodes, which suggests that this system has a broader application in future logic and memory devices.
基金Supported by the National Natural Science Foundation of China (Grant No. 11961141011)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000)the National Key Research and Development Program of China(Grant No. 2016YFA0300600)。
文摘In the transport studies of topological insulators, microflakes exfoliated from bulk single crystals are often used because of the convenience in sample preparation and the accessibility to high carrier mobilities. Here, based on finite element analysis, we show that for the non-Hall-bar shaped topological insulator samples, the measured four-point resistances can be substantially modified by the sample geometry, bulk and surface resistivities,and magnetic field. Geometry correction factors must be introduced for accurately converting the four-point resistances to the longitudinal resistivity and Hall resistivity. The magnetic field dependence of inhomogeneous current density distribution can lead to pronounced positive magnetoresistance and nonlinear Hall effect that would not exist in the samples of ideal Hall bar geometry.
基金supported by the National Key R&D Program of China(2016YFB0400701)NSFC-Guangdong Joint Program(U1301243)+1 种基金the National Basic Research Program of China(2015CB655000)support of Dongguan Major Special Project(2017215117010)
文摘There has been an increasing demand for high-performance and cost-effective organic electron-transport materials for organic light-emitting diodes (OLEDs). In this contribution, we present a simple compound 3-(3-(4,6-diphenyl-l,3,5-triazin-2-yl)phenyl)-1,10-phenanthroline through the facile Pd-catalyzed coupling of a triphenyltriazine boronic ester with 3-hromo-1,10-phenanthroline. It shows a high Tg of 112℃. The ultraviolet photoelectron spectroscopy measurements reveal a deep HOMO level of -6.5 eV. The LUMO level is derived as -3.0 eV, based on the optical bandgap. The low-temperature solid-state phosphorescent spectrum gives a triplet energy of -2.36eV. n-Doping with 8-hydroxyquinolatolithium (Liq, 1:1) leads to considerably improved electron mobility of 5.2 × 10 -6 -5.8 × 10 -5 cm2 v-1 S-1 at E=(2-5) × 10 5Vcm -1, in contrast with the triarylphosphine oxide- phenantroline molecular conjugate we reported previously. It has been shown that through optimizing the device structure and hence suppressing polaron-exciton annihilation, introducing this single Liq-doped electron-transport layer could offer high-efficiency and stable phosphorescent OLEDs.