Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio a...Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio and pressures on the discharge characteristics of Ar/O_(2)plasma.At a fixed Ar/O_(2)gas ratio,with the increasing pressure,higher ion densities,as well as a slight increase in electron density in the bulk region can be observed.The discharge remains dominated by the drift-ambipolar(DA)mode,and the flux of O(3P)at the electrode increases with the increasing pressure due to higher background gas density,while the fluxes of O(1D)and Ardecrease due to the pronounced loss rate.With the increasing proportion of O_(2),a change in the dominant discharge mode from a mode to DA mode can be detected,and the O_(2)-associated charged particle densities are significantly increased.However,Ar+density shows a trend of increasing and then decreasing,while for neutral fluxes at the electrode,Arflux decreases,and O(3P)flux increases with the reduced Ar gas proportion,while trends in O(1D)flux show slight differences.The evolution of the densities of the charged particle and the neutral fluxes under different discharge parameters are discussed in detail using the ionization characteristics as well as the transport properties.Hopefully,more comprehensive understanding of Ar/O_(2)discharge characteristics in this work will provide a valuable reference for the industry.展开更多
Developing efficient and durable hydrogen evolution reaction(HER)electrocatalysts is one of the most important issues for the commercialization of seawater electrolysis,but it remains challenging.Here,we report a CeO_...Developing efficient and durable hydrogen evolution reaction(HER)electrocatalysts is one of the most important issues for the commercialization of seawater electrolysis,but it remains challenging.Here,we report a CeO_(2)-CoP nanoneedle array catalyst loaded on Ti mesh(CeO_(2)-CoP/TM)with workfunction-induced directional charge transport properties.The CeO_(2)-CoP/TM catalyst showed superior HER catalytic activity and stability,with over potentials of 41 and 60 mV to attain 10 mA cm^(-2),in 1 M KOH and 1 M KOH+seawater electrolyte,respectively.Experimental results and theoretical calculations reveal that the work function drives the charge transfer from CeO_(2)to CoP,which effectively balances the electronic density of CoP and CeO_(2),optimizes the d-band center,and accelerates the water activation kinetics,thus enhancing the HER activity.The solar-driven water electrolysis device displays a high and stable solar-to-hydrogen conversion efficiency of 19.6%.This study offers a work function-induced directional charge transport strategy to design efficient and durable catalysts for hydrogen production.展开更多
The limited energy density of lithium-ion capacitors poses a significant obstacle to their widespread application,primarily stemming from the inability of the electrodes to simultaneously fulfill both high energy dens...The limited energy density of lithium-ion capacitors poses a significant obstacle to their widespread application,primarily stemming from the inability of the electrodes to simultaneously fulfill both high energy density and rapid charging requirements.Experimental data demonstrate that a directional particle configuration can enhance charging speed while maintaining high-capacity density,but it is rarely discussed.Here,we have developed a particle-level electrochemical model capable of reconstructing an electrode with a directional particle configuration.By employing this method,an investigation was conducted to explore how the spatial morphology characteristics of particle configuration impact the energy storage characteristics of electrodes.Results demonstrate that rational particle configuration can effectively enhance the transport of lithium ions and create additional space for lithium-ion storage.With the same particle size distribution,the best electrode can increase the discharge capacity by up to132.4% and increase the charging SOC by 11.3% compared to the ordinary electrode under the condition of 6 C.These findings provide a further understanding of the energy storage mechanism inside the anisotropic particle distribution electrode,which is important for developing high-performance lithium-ion capacitors.展开更多
Metal halide perovskites have recently emerged as promising candidates for the next generation of X-ray detectors due to their excellent optoelectronic properties.Especially,two-dimensional(2D)perovskites afford many ...Metal halide perovskites have recently emerged as promising candidates for the next generation of X-ray detectors due to their excellent optoelectronic properties.Especially,two-dimensional(2D)perovskites afford many distinct properties,including remarkable structural diversity,high generation energy,and balanced large exciton binding energy.With the advantages of 2D materials and perovskites,it successfully reduces the decomposition and phase transition of perovskite and effectively suppresses ion migration.Meanwhile,the existence of a high hydrophobic spacer can block water molecules,thus making 2D perovskite obtain excellent stability.All of these advantages have attracted much attention in the field of X-ray detection.This review introduces the classification of 2D halide perovskites,summarizes the synthesis technology and performance characteristics of 2D perovskite X-ray direct detector,and briefly discusses the application of 2D perovskite in scintillators.Finally,this review also emphasizes the key challenges faced by 2D perovskite X-ray detectors in practical application and presents our views on its future development.展开更多
Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-frie...Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-friendly and low-cost organic polymer, cellulose acetate butyrate(CAB), was introduced to the grain boundaries and surfaces of perovskite, resulting in a high-quality and low-defect perovskite film with a nearly tenfold improvement in carrier lifetime. More importantly, the CAB-treated perovskite films have a well-matched energy level with the charge transport layers, thus suppressing carrier nonradiative recombination and carrier accumulation. As a result, the optimized CAB-based device achieved a champion efficiency of 21.5% compared to the control device(18.2%). Since the ester group in CAB bonds with Pb in perovskite, and the H and O in the hydroxyl group bond with the I and organic cations in perovskite,respectively, it will contribute to superior stability under heat, high humidity, and light soaking conditions. After aging under 35% humidity(relative humidity, RH) for 3300 h, the optimized device can still maintain more than 90% of the initial efficiency;it can also retain more than 90% of the initial efficiency after aging at 65 ℃, 65% RH, or light(AM 1.5G) for 500 h. This simple optimization strategy for perovskite stability could facilitate the commercial application of perovskite solar cells.展开更多
The spatiotemporal evolutions of a one-dimensional collisionless decaying plasma bounded by two electrodes with an externally applied electrostatic field are studied by theoretical analyses and particle-in-cell(PIC)si...The spatiotemporal evolutions of a one-dimensional collisionless decaying plasma bounded by two electrodes with an externally applied electrostatic field are studied by theoretical analyses and particle-in-cell(PIC)simulations with the ion extraction process in a laser-induced plasma as the major research background.Based on the theoretical analyses,the transport process of the charged particles including electrons and ions can be divided into three stages:electron oscillation and ion matrix sheath extraction stage,sheath expansion and ion rarefaction wave propagation stage and the plasma collapse stage,and the corresponding criterion for each stage is also presented.Consequently,a complete analytical model is established for describing the ion extraction flux at each stage during the decaying of the laser-induced plasmas under an electrostatic field,which is also validated by the PIC modeling results.Based on this analytical model,influences of the key physical parameters,including the initial electron temperature and number density,plasma width and the externally applied electric voltage,on the ratio of the extracted ions are predicted.The calculated results show that a higher applied electric potential,smaller initial plasma number density and plasma width lead to a higher ratio of the extracted ions during the first stage;while in this stage,the initial electron temperature shows little effect on it.Meanwhile,more ions will be extracted before the plasma collapse once a higher electric potential is applied.The theoretical model presented in this paper is helpful not only for a deep understanding to the charged particle transport mechanisms for a bounded decaying plasma under an applied electrostatic field,but also for an optimization of the ion extraction process in practical applications.展开更多
Layered two dimensional(2D) or quasi-2D perovskites are emerging photovoltaic materials due to their superior environment and structure stability in comparison with their 3D counterparts. The typical 2D perovskites ca...Layered two dimensional(2D) or quasi-2D perovskites are emerging photovoltaic materials due to their superior environment and structure stability in comparison with their 3D counterparts. The typical 2D perovskites can be obtained by cutting 3D perovskites along < 100 > orientation by incorporation of bulky organic spacers, which play a key role in the performance of 2D perovskite solar cells(PSCs). Compared with aliphatic spacers, aromatic spacers with high dielectric constant have the potential to decrease the dielectric and quantum confinement effect of 2D perovskites, promote efficient charge transport and reduce the exciton binding energy, all of which are beneficial for the photovoltaic performance of 2D PSCs. In this review, we aim to provide useful guidelines for the design of aromatic spacers for 2D perovskites. We systematically reviewed the recent progress of aromatic spacers used in 2D PSCs. Finally, we propose the possible design strategies for aromatic spacers that may lead to more efficient and stable 2D PSCs.展开更多
The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes fr...The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes from 0 to 2.5 nm, the power conversion efficiency of the OPV cell based on copper phthalocyanine (CuPc) and C60 was increased from 0.87% to 2.25% under AM 1.5 solar illumination at an intensity of 100 mW/cm^2, which was higher than that of bathocuproine used as a buffer layer. The photocurrent-voltage characteristics showed that Bphen effectively improves electron transport through C60 layer into Ag electrode and leads to balance charge carrier transport capability. The influence of Bphen thickness on OPV cells was also investigated. Furthermore, the absorption spectrum shows that an additional Bphen layer enhances the light harvest capability of CuPc/C60.展开更多
Within the t-J model, the charge transport and spin response of the doped bilayer triangular antiferromagnetare studied by considering the bilayer interaction. Although the bilayer interaction leads to the band splitt...Within the t-J model, the charge transport and spin response of the doped bilayer triangular antiferromagnetare studied by considering the bilayer interaction. Although the bilayer interaction leads to the band splitting in theelectronic structure, the qualitative behaviors of the physical properties are the same as in the single layer case. Theconductivity spectrum shows the low-energy peak and unusual midinfrared band, the temperature-dependent resistivityis characterized by the nonlinearity metallic-like behavior in the higher temperature range and the deviation from themetallic-like behavior in the lower temperature range and the commensurate neutron scattering peak near the half-fillingis split into six incommensurate peaks in the underdoped regime, with the incommensurability increasing with the holeconcentration at lower dopings, and saturating at higher dopings.展开更多
Perovskite-based photovoltaic materials have been attracting attention for their strikingly improved performance at converting sunlight into electricity.The beneficial and unique optoelectronic characteristics of pero...Perovskite-based photovoltaic materials have been attracting attention for their strikingly improved performance at converting sunlight into electricity.The beneficial and unique optoelectronic characteristics of perovskite structures enable researchers to achieve an incredibly remarkable power conversion efficiency.Flexible hybrid perovskite photovoltaics promise emerging applications in a myriad of optoelectronic and wearable/portable device applications owing to their inherent intriguing physicochemical and photophysical properties which enabled researchers to take forward advanced research in this growing field.Flexible perovskite photovoltaics have attracted significant attention owing to their fascinating material properties with combined merits of high efficiency,light-weight,flexibility,semitransparency,compatibility towards roll-to-roll printing,and large-area mass-scale production.Flexible perovskite-based solar cells comprise of 4 key components that include a flexible substrate,semi-transparent bottom contact electrode,perovskite(light absorber layer)and charge transport(electron/hole)layers and top(usually metal)electrode.Among these components,interfacial layers and contact electrodes play a pivotal role in influencing the overall photovoltaic performance.In this comprehensive review article,we focus on the current developments and latest progress achieved in perovskite photovoltaics concerning the charge selective transport layers/electrodes toward the fabrication of highly stable,efficient flexible devices.As a concluding remark,we briefly summarize the highlights of the review article and make recommendations for future outlook and investigation with perspectives on the perovskite-based optoelectronic functional devices that can be potentially utilized in smart wearable and portable devices.展开更多
Surface passivation via post-treatment is an important strategy for improving power conversion efficiency and operational stability of perovskite solar cells.However,so far the interaction mechanisms between passivati...Surface passivation via post-treatment is an important strategy for improving power conversion efficiency and operational stability of perovskite solar cells.However,so far the interaction mechanisms between passivating additive and perovskite are not well understood.Here,we report the atomic-scale interaction of surface passivating additive 2,2-difluoroethylammonium bromine(2FEABr)on the MAPbI_(3).It is found that the bulky 2FEA+cations tend to distribute at film surface,while the Br−anions diffuse from surface into bulk.A combination of 19F,207Pb,and 2H solid-state NMR further reveal the Br−anions’partial substitution for the I−sites,the restricted motion of partial MA+cations,and the firmed perovskite lattices,which would improve charge transport and stability of the perovskite films.Optical spectroscopy and ultraviolet photoelectron spectroscopy demonstrate that the 2FEABr induced surface passivation and energetic modification suppress the nonradiative recombination loss.These findings enable the efficiency of the p-i-n structured PSC significantly increasing from 19.44 to 21.06%,accompanied by excellent stability.Our work further establishes more knowledge link between passivating additive and PSC performance.展开更多
Organic-inorganic hybrid lead-tin perovskite solar cells(Pb-Sn PSCs)have attracted much attention because of their advantages of low toxicity,variable bandgap,and feasibility for all-perovskite tandem solar cells,and ...Organic-inorganic hybrid lead-tin perovskite solar cells(Pb-Sn PSCs)have attracted much attention because of their advantages of low toxicity,variable bandgap,and feasibility for all-perovskite tandem solar cells,and the current power conversion efficiency(PCE)has exceeded 23%.However,due to the rambunctious crystallization process,easily oxidized Sn(Ⅱ)and inadequate energy level arrangement,there are many defects in perovskite films resulting in serious carrier recombination,which makes PCE still lag Pb-based PSCs.The quality of perovskite films is an important factor affecting the overall device performance.The selection and optimization of transport layers not only determines the interface energy level arrangement but also affects the carrier transport.In this paper,the research progress in improving performance of Pb-Sn PSCs in recent years is reviewed from aspects of perovskite layer and transport layers.The profound understanding of different promotion methods is summarized as well.These results have certain guiding significance for the future development and commercial application of Pb-Sn PSCs.展开更多
Poly(3,4-ethylenedioxythiophene)(PEDOT)has proved its quite competitive thermoelectric properties in flexible electronics with its excellent electrical and mechanical properties.Since the early discovery of PEDOT,cons...Poly(3,4-ethylenedioxythiophene)(PEDOT)has proved its quite competitive thermoelectric properties in flexible electronics with its excellent electrical and mechanical properties.Since the early discovery of PEDOT,considerable experimental progress has been achieved in optimizing and improving the thermoelectric properties as a promising organic thermoelectric material(OTE).Among them,theoretical research has made significant contributions to its development.Here the basic physics of conductive PEDOT are reviewed based on the combination of theory and experiment.The purpose is to provide a new insight into the development of PEDOT,so as to effectively design and preparation of advanced thermoelectric PEDOT material in the future.展开更多
The c-axis charge transport of the hole doped triangular antiferromagnet is investigated within the t-J model by considering the incoherent interlayer hopping. It is shown that the c-axis charge transport of the hole ...The c-axis charge transport of the hole doped triangular antiferromagnet is investigated within the t-J model by considering the incoherent interlayer hopping. It is shown that the c-axis charge transport of the hole doped triangular antiferromagnet is essentially determined by the scattering from the in-plane fluctuation. The c-axis conductivity spectrum shows a low-energy peak and the unusual high-energy broad band, while the c-axis resistivity is characterized by a crossover from the high temperature metallic-like behavior to the low temperature insulating-like behavior, which is qualitatively consistent with those of the hole doped square lattice antiferromagnet.展开更多
Quasi-two-dimensional(quasi-2D)perovskites with high stability usually suffers from poor device efficiency.Chemical tuning of the spacer cations has been an effective strategy to achieve efficient and stable quasi-2D ...Quasi-two-dimensional(quasi-2D)perovskites with high stability usually suffers from poor device efficiency.Chemical tuning of the spacer cations has been an effective strategy to achieve efficient and stable quasi-2D perovskite solar cells.Here,we demonstrate that 3-halogon-substituted benzylammonium iodide(3X-BAI,X=F,Cl,Br,I)can significantly affect the orientation of low-dimensional perovskites and charge transport from perovskite to hole extraction layer,as well as device performance.With 3Br-BAI,we achieve the highest device efficiency of 13.21%for quasi-2D perovskites with a nominal n=3 average composition.Our work provides a facile approach to regulate vertical crystal orientation and charge transport via tuning the molecular structure of organic spacer toward high performance quasi-2D perovskite solar cells.展开更多
Charge transport properties of F, OH, OCH3, SH and SCH3-substituted tetra- benz[a,c,h,j]- anthracene derivative molecules have been investigated theoretically at the B3LYP/6-31G** level using Marcus theory. The resu...Charge transport properties of F, OH, OCH3, SH and SCH3-substituted tetra- benz[a,c,h,j]- anthracene derivative molecules have been investigated theoretically at the B3LYP/6-31G** level using Marcus theory. The results showed that at 300 K, the hole or electron transport capability of F or SH-substituted molecules was better obviously than that of OH or OCH3-substituted molecules, The electron transport capability of SCH3-substituted and F or SH-substituted molecules was superior to their hole transport capability, respectively. F, SH or SCH3-substituted tetrabenz[a,c,h,j]-anthracene derivative molecules can be used as electron transport materials.展开更多
A novel structure of silicon-riched nitride(SRN)/silicon-riched oxide(SRO) is proposed and prepared using RF reactive magnetron co-sputtering. High temperature annealing of SRN/SRO multilayers leads to formation of Si...A novel structure of silicon-riched nitride(SRN)/silicon-riched oxide(SRO) is proposed and prepared using RF reactive magnetron co-sputtering. High temperature annealing of SRN/SRO multilayers leads to formation of Si nanocrystals(NC) from isolating SRN and SRO layers simultaneously, which efficiently improves carrier transport ability compared to conventional SRN/Si_3N_4 counterpart. Micro-Raman scattering analysis reveals that SRN layer has dominating number of denser and smaller Si NCs, while SRO layer has relatively less, sparser and bigger Si NCs, as confirmed by high resolution transmission electron microscopy observation. The substitute SRO layers for Si_3N_4 counterparts significantly increase the amount of Si NCs as well as crystallization ratio in SRN layers; while the average Si NC size can be well controlled by the thickness of SRN layers and the content of N, and hence an obvious stronger absorption in UV region for the novel structure can be observed in absorption spectra. The I-V characteristics show that the current of hybrid SRN/SRO system increases up to 2 orders of magnitude at 1 V and even 5 orders of magnitude at 4 V compared to that of SRN/Si_3N_4 structure. Si NCs in Si Oylayers provide a transport pathway for adjacent Si NCs in Si Nxlayers. The obvious advantage in carrier transportation suggests that SRN/SRO hybrid system could be a promising structure and platform to build Si nanostructured solar cells.展开更多
We present a novel numerical model and simulate preliminarily the charging process of a polymer subjected to electron irradiation of several 10 keV. The model includes the simultaneous processes of electron scattering...We present a novel numerical model and simulate preliminarily the charging process of a polymer subjected to electron irradiation of several 10 keV. The model includes the simultaneous processes of electron scattering and ambipolar transport and the influence of a self-consistent electric field on the scattering distribution of electrons. The dynamic spatial distribution of charges is obtained and validated by existing experimental data. Our simulations show that excess negative charges are concentrated near the edge of the electron range. However, the formed region of high charge density may extend to the surface and bottom of a kapton sample, due to the effects of the electric field on electron scattering and charge transport, respectively. Charge trapping is then demonstrated to significantly influence the charge motion. The charge distribution can be extended to the bottom as the trap density decreases. Charge accumulation is therefore balanced by the appearance and increase of leakage current. Accordingly, our model and numerical simulation provide a comprehensive insight into the charging dynamics of a polymer irradiated by electrons in the complex space environment.展开更多
Engineering point defects such as metal and oxygen vacancies play a crucial role in manipulating the electrical,optical,and catalytic properties of oxide semiconductors for solar water splitting.Herein,we synthesized ...Engineering point defects such as metal and oxygen vacancies play a crucial role in manipulating the electrical,optical,and catalytic properties of oxide semiconductors for solar water splitting.Herein,we synthesized nanoporous CuBi_(2)O_(4)(np-CBO)photocathodes and engineered their surface point defects via rapid thermal processing(RTP)in controlled atmospheres(O_(2),N_(2),and vacuum).We found that the O_(2)-RTP treatment of np-CBO increased the charge carrier density effectively without hampering the nanoporous morphology,which was attributed to the formation of copper vacancies(VCu).Further analyses revealed that the amounts of oxygen vacancies(Vo)and Cu^(1+)were reduced simultaneously,and the relative electrochemical active surface area increased after the O_(2)-RTP treatment.Notably,the point defects(VC_(u),Cu^(1+),and Vo)regulated np-CBO achieved a superb water-splitting photocurrent density of-1.81 m A cm^(-2) under simulated sunlight illumination,which is attributed to the enhanced charge transport and transfer properties resulting from the regulated surface point defects.Finally,the reversibility of the formation of the point defects was checked by sequential RTP treatments(O_(2)-N_(2)-O_(2)-N_(2)),demonstrating the strong dependence of photocurrent response on the RTP cycles.Conclusively,the surface point defect engineering via RTP treatment in a controlled atmosphere is a rapid and facile strategy to promote charge transport and transfer properties of photoelectrodes for efficient solar water-splitting.展开更多
Two-dimensional(2D)perovskites solar cells(PSCs)have attracted considerable attention owing to their excellent stability against humidity;however,some imperfectness of 2D perovskites,such as poor crystallinity,disorde...Two-dimensional(2D)perovskites solar cells(PSCs)have attracted considerable attention owing to their excellent stability against humidity;however,some imperfectness of 2D perovskites,such as poor crystallinity,disordered orientation,and inferior charge transport still limit the power conversion efficiency(PCE)of 2D PSCs.In this work,2D Ti3C2Tx MXene nanosheets with high electrical conductivity and mobility were employed as a nanosized additive to prepare 2D Ruddlesden–Popper perovskite films.The PCE of solar cells was increased from 13.69(without additive)to 15.71%after incorporating the Ti_(3)C_(2)T_(x) nanosheets with an optimized concentration.This improved performance is attributed to the enhanced crystallinity,orientation,and passivated trap states in the 3D phase that result in accelerated charge transfer process in vertical direction.More importantly,the unencapsulated cells exhibited excellent stability under ambient conditions with 55±5%relative humidity.展开更多
基金the National Natural Science Foun-dation of China(Grant Nos.12020101005,11975067,and 12347131)the Fundamental Research Funds for the Cen-tral Universities(Grant No.DUT24BS069).
文摘Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio and pressures on the discharge characteristics of Ar/O_(2)plasma.At a fixed Ar/O_(2)gas ratio,with the increasing pressure,higher ion densities,as well as a slight increase in electron density in the bulk region can be observed.The discharge remains dominated by the drift-ambipolar(DA)mode,and the flux of O(3P)at the electrode increases with the increasing pressure due to higher background gas density,while the fluxes of O(1D)and Ardecrease due to the pronounced loss rate.With the increasing proportion of O_(2),a change in the dominant discharge mode from a mode to DA mode can be detected,and the O_(2)-associated charged particle densities are significantly increased.However,Ar+density shows a trend of increasing and then decreasing,while for neutral fluxes at the electrode,Arflux decreases,and O(3P)flux increases with the reduced Ar gas proportion,while trends in O(1D)flux show slight differences.The evolution of the densities of the charged particle and the neutral fluxes under different discharge parameters are discussed in detail using the ionization characteristics as well as the transport properties.Hopefully,more comprehensive understanding of Ar/O_(2)discharge characteristics in this work will provide a valuable reference for the industry.
基金financially supported by the National Natural Science Foundation of China(22369025)the Yunnan Applied Basic Research Projects(202201AT070095,202301AT070098)+2 种基金the Scientific Research Fund Project of Yunnan Provincial Department of Education(2023Y0262)the Education Reform Research Project of Yunnan University(2021Z06)the Yunnan Revitalization Talent Support Program。
文摘Developing efficient and durable hydrogen evolution reaction(HER)electrocatalysts is one of the most important issues for the commercialization of seawater electrolysis,but it remains challenging.Here,we report a CeO_(2)-CoP nanoneedle array catalyst loaded on Ti mesh(CeO_(2)-CoP/TM)with workfunction-induced directional charge transport properties.The CeO_(2)-CoP/TM catalyst showed superior HER catalytic activity and stability,with over potentials of 41 and 60 mV to attain 10 mA cm^(-2),in 1 M KOH and 1 M KOH+seawater electrolyte,respectively.Experimental results and theoretical calculations reveal that the work function drives the charge transfer from CeO_(2)to CoP,which effectively balances the electronic density of CoP and CeO_(2),optimizes the d-band center,and accelerates the water activation kinetics,thus enhancing the HER activity.The solar-driven water electrolysis device displays a high and stable solar-to-hydrogen conversion efficiency of 19.6%.This study offers a work function-induced directional charge transport strategy to design efficient and durable catalysts for hydrogen production.
基金This work is supported by the National Key R&D Program of China(2021YFB2400400).
文摘The limited energy density of lithium-ion capacitors poses a significant obstacle to their widespread application,primarily stemming from the inability of the electrodes to simultaneously fulfill both high energy density and rapid charging requirements.Experimental data demonstrate that a directional particle configuration can enhance charging speed while maintaining high-capacity density,but it is rarely discussed.Here,we have developed a particle-level electrochemical model capable of reconstructing an electrode with a directional particle configuration.By employing this method,an investigation was conducted to explore how the spatial morphology characteristics of particle configuration impact the energy storage characteristics of electrodes.Results demonstrate that rational particle configuration can effectively enhance the transport of lithium ions and create additional space for lithium-ion storage.With the same particle size distribution,the best electrode can increase the discharge capacity by up to132.4% and increase the charging SOC by 11.3% compared to the ordinary electrode under the condition of 6 C.These findings provide a further understanding of the energy storage mechanism inside the anisotropic particle distribution electrode,which is important for developing high-performance lithium-ion capacitors.
基金This work was funded by the National Natural Science Foundation of China(22279049 and 12247101)the Fundamental Research Funds for the Central Universities(lzujbky-2021-it31,lzujbky-2021-ct15 and lzujbky-2021-sp69)+1 种基金the calculation work was supported by Supercomputing Center of Lanzhou Universitythe Gansu Province Outstanding Doctoral Student Program(22JR5RA435).
文摘Metal halide perovskites have recently emerged as promising candidates for the next generation of X-ray detectors due to their excellent optoelectronic properties.Especially,two-dimensional(2D)perovskites afford many distinct properties,including remarkable structural diversity,high generation energy,and balanced large exciton binding energy.With the advantages of 2D materials and perovskites,it successfully reduces the decomposition and phase transition of perovskite and effectively suppresses ion migration.Meanwhile,the existence of a high hydrophobic spacer can block water molecules,thus making 2D perovskite obtain excellent stability.All of these advantages have attracted much attention in the field of X-ray detection.This review introduces the classification of 2D halide perovskites,summarizes the synthesis technology and performance characteristics of 2D perovskite X-ray direct detector,and briefly discusses the application of 2D perovskite in scintillators.Finally,this review also emphasizes the key challenges faced by 2D perovskite X-ray detectors in practical application and presents our views on its future development.
基金supported by the National Key Research and Development Program of China (2020YFA07150002018YFB1503100)the Suzhou Fangsheng FS-300 for research support。
文摘Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-friendly and low-cost organic polymer, cellulose acetate butyrate(CAB), was introduced to the grain boundaries and surfaces of perovskite, resulting in a high-quality and low-defect perovskite film with a nearly tenfold improvement in carrier lifetime. More importantly, the CAB-treated perovskite films have a well-matched energy level with the charge transport layers, thus suppressing carrier nonradiative recombination and carrier accumulation. As a result, the optimized CAB-based device achieved a champion efficiency of 21.5% compared to the control device(18.2%). Since the ester group in CAB bonds with Pb in perovskite, and the H and O in the hydroxyl group bond with the I and organic cations in perovskite,respectively, it will contribute to superior stability under heat, high humidity, and light soaking conditions. After aging under 35% humidity(relative humidity, RH) for 3300 h, the optimized device can still maintain more than 90% of the initial efficiency;it can also retain more than 90% of the initial efficiency after aging at 65 ℃, 65% RH, or light(AM 1.5G) for 500 h. This simple optimization strategy for perovskite stability could facilitate the commercial application of perovskite solar cells.
基金the National Natural Science Foundation of China(Grant No.11775128)。
文摘The spatiotemporal evolutions of a one-dimensional collisionless decaying plasma bounded by two electrodes with an externally applied electrostatic field are studied by theoretical analyses and particle-in-cell(PIC)simulations with the ion extraction process in a laser-induced plasma as the major research background.Based on the theoretical analyses,the transport process of the charged particles including electrons and ions can be divided into three stages:electron oscillation and ion matrix sheath extraction stage,sheath expansion and ion rarefaction wave propagation stage and the plasma collapse stage,and the corresponding criterion for each stage is also presented.Consequently,a complete analytical model is established for describing the ion extraction flux at each stage during the decaying of the laser-induced plasmas under an electrostatic field,which is also validated by the PIC modeling results.Based on this analytical model,influences of the key physical parameters,including the initial electron temperature and number density,plasma width and the externally applied electric voltage,on the ratio of the extracted ions are predicted.The calculated results show that a higher applied electric potential,smaller initial plasma number density and plasma width lead to a higher ratio of the extracted ions during the first stage;while in this stage,the initial electron temperature shows little effect on it.Meanwhile,more ions will be extracted before the plasma collapse once a higher electric potential is applied.The theoretical model presented in this paper is helpful not only for a deep understanding to the charged particle transport mechanisms for a bounded decaying plasma under an applied electrostatic field,but also for an optimization of the ion extraction process in practical applications.
基金financially supported by National Natural Science Foundation of China (Grants Nos. 52273182, 21875122)。
文摘Layered two dimensional(2D) or quasi-2D perovskites are emerging photovoltaic materials due to their superior environment and structure stability in comparison with their 3D counterparts. The typical 2D perovskites can be obtained by cutting 3D perovskites along < 100 > orientation by incorporation of bulky organic spacers, which play a key role in the performance of 2D perovskite solar cells(PSCs). Compared with aliphatic spacers, aromatic spacers with high dielectric constant have the potential to decrease the dielectric and quantum confinement effect of 2D perovskites, promote efficient charge transport and reduce the exciton binding energy, all of which are beneficial for the photovoltaic performance of 2D PSCs. In this review, we aim to provide useful guidelines for the design of aromatic spacers for 2D perovskites. We systematically reviewed the recent progress of aromatic spacers used in 2D PSCs. Finally, we propose the possible design strategies for aromatic spacers that may lead to more efficient and stable 2D PSCs.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.60736005 and No.60425101-1), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.60721001), the Provincial Program (No.9140A02060609DZ0208), the Program for New Century Excellent Talents in University (No.NCET- 06-0812), the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No.GGRYJJ08P 05), and the Young Excellence Project of Sichuan (No.09ZQ026-074).
文摘The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes from 0 to 2.5 nm, the power conversion efficiency of the OPV cell based on copper phthalocyanine (CuPc) and C60 was increased from 0.87% to 2.25% under AM 1.5 solar illumination at an intensity of 100 mW/cm^2, which was higher than that of bathocuproine used as a buffer layer. The photocurrent-voltage characteristics showed that Bphen effectively improves electron transport through C60 layer into Ag electrode and leads to balance charge carrier transport capability. The influence of Bphen thickness on OPV cells was also investigated. Furthermore, the absorption spectrum shows that an additional Bphen layer enhances the light harvest capability of CuPc/C60.
文摘Within the t-J model, the charge transport and spin response of the doped bilayer triangular antiferromagnetare studied by considering the bilayer interaction. Although the bilayer interaction leads to the band splitting in theelectronic structure, the qualitative behaviors of the physical properties are the same as in the single layer case. Theconductivity spectrum shows the low-energy peak and unusual midinfrared band, the temperature-dependent resistivityis characterized by the nonlinearity metallic-like behavior in the higher temperature range and the deviation from themetallic-like behavior in the lower temperature range and the commensurate neutron scattering peak near the half-fillingis split into six incommensurate peaks in the underdoped regime, with the incommensurability increasing with the holeconcentration at lower dopings, and saturating at higher dopings.
基金the CSIRO Low Emissions Technologies Program for the support of this studythe financial support from the Australian Research Council(ARC)for the Future Fellowship(FT130101337)+4 种基金QUT core funding(QUT/322120-0301/07)supported by NSF MRI(1428992)U.S.-Egypt Science and Technology(S&T)Joint FundSDBoR R&D ProgramEDA University Center Program(ED18DEN3030025)。
文摘Perovskite-based photovoltaic materials have been attracting attention for their strikingly improved performance at converting sunlight into electricity.The beneficial and unique optoelectronic characteristics of perovskite structures enable researchers to achieve an incredibly remarkable power conversion efficiency.Flexible hybrid perovskite photovoltaics promise emerging applications in a myriad of optoelectronic and wearable/portable device applications owing to their inherent intriguing physicochemical and photophysical properties which enabled researchers to take forward advanced research in this growing field.Flexible perovskite photovoltaics have attracted significant attention owing to their fascinating material properties with combined merits of high efficiency,light-weight,flexibility,semitransparency,compatibility towards roll-to-roll printing,and large-area mass-scale production.Flexible perovskite-based solar cells comprise of 4 key components that include a flexible substrate,semi-transparent bottom contact electrode,perovskite(light absorber layer)and charge transport(electron/hole)layers and top(usually metal)electrode.Among these components,interfacial layers and contact electrodes play a pivotal role in influencing the overall photovoltaic performance.In this comprehensive review article,we focus on the current developments and latest progress achieved in perovskite photovoltaics concerning the charge selective transport layers/electrodes toward the fabrication of highly stable,efficient flexible devices.As a concluding remark,we briefly summarize the highlights of the review article and make recommendations for future outlook and investigation with perspectives on the perovskite-based optoelectronic functional devices that can be potentially utilized in smart wearable and portable devices.
基金supported by the National Science Foundation of China grant(21875067)the Fundamental Research Funds for the Central Universities,Shanghai Rising-Star(19QA1403100)+4 种基金East China Normal University(ECNU)Multifunctional Platform for InnovationThe Ministry of Science and Technology of the People’s Republic of China(No.2018YFF01012504)the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)for financial support。
文摘Surface passivation via post-treatment is an important strategy for improving power conversion efficiency and operational stability of perovskite solar cells.However,so far the interaction mechanisms between passivating additive and perovskite are not well understood.Here,we report the atomic-scale interaction of surface passivating additive 2,2-difluoroethylammonium bromine(2FEABr)on the MAPbI_(3).It is found that the bulky 2FEA+cations tend to distribute at film surface,while the Br−anions diffuse from surface into bulk.A combination of 19F,207Pb,and 2H solid-state NMR further reveal the Br−anions’partial substitution for the I−sites,the restricted motion of partial MA+cations,and the firmed perovskite lattices,which would improve charge transport and stability of the perovskite films.Optical spectroscopy and ultraviolet photoelectron spectroscopy demonstrate that the 2FEABr induced surface passivation and energetic modification suppress the nonradiative recombination loss.These findings enable the efficiency of the p-i-n structured PSC significantly increasing from 19.44 to 21.06%,accompanied by excellent stability.Our work further establishes more knowledge link between passivating additive and PSC performance.
基金supported by the National Natural Science Foundation of China(62175084,62005093)the Industrial Technology Research and Development Project of Jilin Province(2020C026-5)。
文摘Organic-inorganic hybrid lead-tin perovskite solar cells(Pb-Sn PSCs)have attracted much attention because of their advantages of low toxicity,variable bandgap,and feasibility for all-perovskite tandem solar cells,and the current power conversion efficiency(PCE)has exceeded 23%.However,due to the rambunctious crystallization process,easily oxidized Sn(Ⅱ)and inadequate energy level arrangement,there are many defects in perovskite films resulting in serious carrier recombination,which makes PCE still lag Pb-based PSCs.The quality of perovskite films is an important factor affecting the overall device performance.The selection and optimization of transport layers not only determines the interface energy level arrangement but also affects the carrier transport.In this paper,the research progress in improving performance of Pb-Sn PSCs in recent years is reviewed from aspects of perovskite layer and transport layers.The profound understanding of different promotion methods is summarized as well.These results have certain guiding significance for the future development and commercial application of Pb-Sn PSCs.
基金supported by the National Natural Science Foundation of China(Grant Nos.51762018,52073128,and 22065013)the Natural Science Foundation of Jiangxi Province,China(Grant Nos.20202ACBL204005,20202ACBL214005,and 20203AEI003)。
文摘Poly(3,4-ethylenedioxythiophene)(PEDOT)has proved its quite competitive thermoelectric properties in flexible electronics with its excellent electrical and mechanical properties.Since the early discovery of PEDOT,considerable experimental progress has been achieved in optimizing and improving the thermoelectric properties as a promising organic thermoelectric material(OTE).Among them,theoretical research has made significant contributions to its development.Here the basic physics of conductive PEDOT are reviewed based on the combination of theory and experiment.The purpose is to provide a new insight into the development of PEDOT,so as to effectively design and preparation of advanced thermoelectric PEDOT material in the future.
文摘The c-axis charge transport of the hole doped triangular antiferromagnet is investigated within the t-J model by considering the incoherent interlayer hopping. It is shown that the c-axis charge transport of the hole doped triangular antiferromagnet is essentially determined by the scattering from the in-plane fluctuation. The c-axis conductivity spectrum shows a low-energy peak and the unusual high-energy broad band, while the c-axis resistivity is characterized by a crossover from the high temperature metallic-like behavior to the low temperature insulating-like behavior, which is qualitatively consistent with those of the hole doped square lattice antiferromagnet.
基金supported financially by the National Natural Science Foundation of China(61974066,61961160733,62005223)the National Science Fund for Distinguished Young Scholars(61725502)+2 种基金the Major Program of Natural Science Research of Jiangsu Higher Education Institutions of China(18KJA510002)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(2020GXLH-Z-024)the Synergetic Innovation Center for Organic Electronics and Information Displays。
文摘Quasi-two-dimensional(quasi-2D)perovskites with high stability usually suffers from poor device efficiency.Chemical tuning of the spacer cations has been an effective strategy to achieve efficient and stable quasi-2D perovskite solar cells.Here,we demonstrate that 3-halogon-substituted benzylammonium iodide(3X-BAI,X=F,Cl,Br,I)can significantly affect the orientation of low-dimensional perovskites and charge transport from perovskite to hole extraction layer,as well as device performance.With 3Br-BAI,we achieve the highest device efficiency of 13.21%for quasi-2D perovskites with a nominal n=3 average composition.Our work provides a facile approach to regulate vertical crystal orientation and charge transport via tuning the molecular structure of organic spacer toward high performance quasi-2D perovskite solar cells.
基金sponsored by the National Natural Science Foundation of China(No.50973076)Sichuan Provincial Scientific Program(No.2010JY0041 and 2011ZG0247)the Natural Science Program of Sichuan Provincial Education Department(No.11ZA206)
文摘Charge transport properties of F, OH, OCH3, SH and SCH3-substituted tetra- benz[a,c,h,j]- anthracene derivative molecules have been investigated theoretically at the B3LYP/6-31G** level using Marcus theory. The results showed that at 300 K, the hole or electron transport capability of F or SH-substituted molecules was better obviously than that of OH or OCH3-substituted molecules, The electron transport capability of SCH3-substituted and F or SH-substituted molecules was superior to their hole transport capability, respectively. F, SH or SCH3-substituted tetrabenz[a,c,h,j]-anthracene derivative molecules can be used as electron transport materials.
基金supported by the National Natural Science Foundation of China(No.61036001,51072194and 60906035)
文摘A novel structure of silicon-riched nitride(SRN)/silicon-riched oxide(SRO) is proposed and prepared using RF reactive magnetron co-sputtering. High temperature annealing of SRN/SRO multilayers leads to formation of Si nanocrystals(NC) from isolating SRN and SRO layers simultaneously, which efficiently improves carrier transport ability compared to conventional SRN/Si_3N_4 counterpart. Micro-Raman scattering analysis reveals that SRN layer has dominating number of denser and smaller Si NCs, while SRO layer has relatively less, sparser and bigger Si NCs, as confirmed by high resolution transmission electron microscopy observation. The substitute SRO layers for Si_3N_4 counterparts significantly increase the amount of Si NCs as well as crystallization ratio in SRN layers; while the average Si NC size can be well controlled by the thickness of SRN layers and the content of N, and hence an obvious stronger absorption in UV region for the novel structure can be observed in absorption spectra. The I-V characteristics show that the current of hybrid SRN/SRO system increases up to 2 orders of magnitude at 1 V and even 5 orders of magnitude at 4 V compared to that of SRN/Si_3N_4 structure. Si NCs in Si Oylayers provide a transport pathway for adjacent Si NCs in Si Nxlayers. The obvious advantage in carrier transportation suggests that SRN/SRO hybrid system could be a promising structure and platform to build Si nanostructured solar cells.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175140)the Fundamental Research Funds for the Central Universities
文摘We present a novel numerical model and simulate preliminarily the charging process of a polymer subjected to electron irradiation of several 10 keV. The model includes the simultaneous processes of electron scattering and ambipolar transport and the influence of a self-consistent electric field on the scattering distribution of electrons. The dynamic spatial distribution of charges is obtained and validated by existing experimental data. Our simulations show that excess negative charges are concentrated near the edge of the electron range. However, the formed region of high charge density may extend to the surface and bottom of a kapton sample, due to the effects of the electric field on electron scattering and charge transport, respectively. Charge trapping is then demonstrated to significantly influence the charge motion. The charge distribution can be extended to the bottom as the trap density decreases. Charge accumulation is therefore balanced by the appearance and increase of leakage current. Accordingly, our model and numerical simulation provide a comprehensive insight into the charging dynamics of a polymer irradiated by electrons in the complex space environment.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea,funded by the Ministry of Science,ICT,and Future Planning(NRF Award No.NRF-2019R1A2C2002024 and 2021R1A4A1031357)supported by the Basic Science Research Program through NRF funded by the Ministry of Education(NRF Award No.NRF2020R1A6A1A03043435)。
文摘Engineering point defects such as metal and oxygen vacancies play a crucial role in manipulating the electrical,optical,and catalytic properties of oxide semiconductors for solar water splitting.Herein,we synthesized nanoporous CuBi_(2)O_(4)(np-CBO)photocathodes and engineered their surface point defects via rapid thermal processing(RTP)in controlled atmospheres(O_(2),N_(2),and vacuum).We found that the O_(2)-RTP treatment of np-CBO increased the charge carrier density effectively without hampering the nanoporous morphology,which was attributed to the formation of copper vacancies(VCu).Further analyses revealed that the amounts of oxygen vacancies(Vo)and Cu^(1+)were reduced simultaneously,and the relative electrochemical active surface area increased after the O_(2)-RTP treatment.Notably,the point defects(VC_(u),Cu^(1+),and Vo)regulated np-CBO achieved a superb water-splitting photocurrent density of-1.81 m A cm^(-2) under simulated sunlight illumination,which is attributed to the enhanced charge transport and transfer properties resulting from the regulated surface point defects.Finally,the reversibility of the formation of the point defects was checked by sequential RTP treatments(O_(2)-N_(2)-O_(2)-N_(2)),demonstrating the strong dependence of photocurrent response on the RTP cycles.Conclusively,the surface point defect engineering via RTP treatment in a controlled atmosphere is a rapid and facile strategy to promote charge transport and transfer properties of photoelectrodes for efficient solar water-splitting.
基金the National Natural Science Foundation of China(No.11974129 to X.-F.W.)“the Fundamental Research Funds for the Central Universities,Jilin University.”。
文摘Two-dimensional(2D)perovskites solar cells(PSCs)have attracted considerable attention owing to their excellent stability against humidity;however,some imperfectness of 2D perovskites,such as poor crystallinity,disordered orientation,and inferior charge transport still limit the power conversion efficiency(PCE)of 2D PSCs.In this work,2D Ti3C2Tx MXene nanosheets with high electrical conductivity and mobility were employed as a nanosized additive to prepare 2D Ruddlesden–Popper perovskite films.The PCE of solar cells was increased from 13.69(without additive)to 15.71%after incorporating the Ti_(3)C_(2)T_(x) nanosheets with an optimized concentration.This improved performance is attributed to the enhanced crystallinity,orientation,and passivated trap states in the 3D phase that result in accelerated charge transfer process in vertical direction.More importantly,the unencapsulated cells exhibited excellent stability under ambient conditions with 55±5%relative humidity.