The development of energy storage devices with high energy density relies heavily on thick film electrodes,but it is challenging due to the limited ion transport kinetics inherent in thick electrodes.Here,we report on...The development of energy storage devices with high energy density relies heavily on thick film electrodes,but it is challenging due to the limited ion transport kinetics inherent in thick electrodes.Here,we report on the preparation of a directional vertical array of micro-porous transport networks on LTO electrodes using a femtosecond laser processing strategy,enabling directional ion rapid transport and achieving good electrochemical performance in thick film electrodes.Various three-dimensional(3D)vertically aligned micro-pore networks are innovatively designed,and the structure,kinetics characteristics,and electrochemical performance of the prepared ion transport channels are analyzed and discussed by multiple characterization and testing methods.Furthermore,the rational mechanisms of electrode performance improvement are studied experimentally and simulated from two aspects of structural mechanics and transmission kinetics.The ion diffusion coefficient,rate performance at 60 C,and electrode interface area of the laser-optimized 60-15%micro-porous transport network electrodes increase by 25.2 times,2.2 times,and 2.15 times,respectively than those of untreated electrodes.Therefore,the preparation of 3D micro-porous transport networks by femtosecond laser on ultra-thick electrodes is a feasible way to develop high-energy batteries.In addition,the unique micro-porous transport network structure can be widely extended to design and explore other high-performance energy materials.展开更多
In future optical transport networks,lightpath performance analysis is of great practical significance for fully automated management.In general,the quality of transmission(QoT)of lightpaths,measured by optical qualit...In future optical transport networks,lightpath performance analysis is of great practical significance for fully automated management.In general,the quality of transmission(QoT)of lightpaths,measured by optical quality factor or optical signal-to-noise ratio,has a complex time-varying process,along with the interactions of the other lightpath state parameters(LSPs),such as transmit power,chromatic dispersion,polarization mode dispersion.Current studies are mostly focused on lightpath QoT estimation,but ignoring lightpath-level data analytics.In this case,our article proposes a novel lightpath performance analysis method considering recurrence plot(RP)and cross recurrence plot(CRP).Firstly,we give a detailed interpretation on the recurrence patterns of LSPs via a qualitative 2-D RP representation and its quantitative measure.It can potentially enable the accurate and fast lightpath failure detection with a low computational burden.On the other hand,CRP is devoted to modeling the relationships between lightpath QoT and LSPs,and the correlation degree is determined by a geometric mean of multiple indexes of cross recurrence quantification analysis.From the view of application,such CRP analysis can provide the effective knowledge sharing to guarantee more credible QoT prediction.Extensive experiments on a real-world optical network dataset have clearly demonstrated the effectiveness of our proposal.展开更多
The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage...The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage control scheme.In this paper,we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV.In the first stage,the action of on-load tap changer and capacitor banks,etc.,are determined by optimal power flow calculation,and the node electricity price is also determined based on dynamic time-of-use tariff mechanism.In the second stage,multiple operating scenarios of multiple types of EVs such as cabs,private cars and buses are considered,and the scheduling results of each EV are solved by building an optimization model based on constraints such as queuing theory,Floyd-Warshall algorithm and traffic flow information.In the third stage,the output power of photovoltaic and energy storage systems is fine-tuned in the normal control mode.The charging power of EVs is also regulated in the emergency control mode to reduce the voltage deviation,and the amount of regulation is calculated based on the fair voltage control mode of EVs.Finally,we test the modified IEEE 33-bus distribution system coupled with the 24-bus Beijing TN.The simulation results show that the proposed scheme can mitigate voltage violations well.展开更多
The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructe...The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructed with the SW topology, the global linear coupling and special linear feedback can realize the synchronization control of beam halo-chaos as well as periodic state in the BTN with the SW topology, respectively. This important result can provide an effective way for the experimental study and the engineering design of the BTN in the high-current accelerator driven radioactive clean nuclear power systems, and may have potential use in prospective applications for halo-chaos secure communication.展开更多
The objective of this research is to determine the effect earthquakes have on the performance of transportation network systems.To do this,bridge fragility curves,expressed as a function of peak ground acceleration(PG...The objective of this research is to determine the effect earthquakes have on the performance of transportation network systems.To do this,bridge fragility curves,expressed as a function of peak ground acceleration(PGA)and peak ground velocity(PGV),were developed.Network damage was evaluated under the 1994 Northridge earthquake and scenario earthquakes.A probabilistic model was developed to determine the effect of repair of bridge damage on the improvement of the network performance as days passed after the event.As an example,the system performance degradation measured in terms of an index,'Drivers Delay,'is calculated for the Los Angeles area transportation system,and losses due to Drivers Delay with and without retrofit were estimated.展开更多
On the basis of investigating the statistical data of bus transport networks of three big cities in China,wepropose that each bus route is a clique(maximal complete subgraph)and a bus transport network(BTN)consists of...On the basis of investigating the statistical data of bus transport networks of three big cities in China,wepropose that each bus route is a clique(maximal complete subgraph)and a bus transport network(BTN)consists of alot of cliques,which intensively connect and overlap with each other.We study the network properties,which includethe degree distribution,multiple edges' overlapping time distribution,distribution of the overlap size between any twooverlapping cliques,distribution of the number of cliques that a node belongs to.Naturally,the cliques also constitute anetwork,with the overlapping nodes being their multiple links.We also research its network properties such as degreedistribution,clustering,average path length,and so on.We propose that a BTN has the properties of random cliqueincrement and random overlapping clique,at the same time,a BTN is a small-world network with highly clique-clusteredand highly clique-overlapped.Finally,we introduce a BTN evolution model,whose simulation results agree well withthe statistical laws that emerge in real BTNs.展开更多
To maintain their capacity,transportation infrastructures are in need of regular maintenance and rehabilitation.The major challenge facing transportation engineers is the network-level policies to maintain the deterio...To maintain their capacity,transportation infrastructures are in need of regular maintenance and rehabilitation.The major challenge facing transportation engineers is the network-level policies to maintain the deteriorating roads at an acceptable level of serviceability.In this work,a quantitative transportation network efficiency measure is presented and then how to determine optimally network-level road maintenance policy depending on the road importance to the network performance has been demonstrated.The examples show that the different roads should be set different maintenance time points in terms of the retention capacities of the roads,because the different roads play different roles in network and have different important degrees to the network performance.This network-level road maintenance optimization method could not only save lots of infrastructure investments,but also ensure the service level of the existing transportation system.展开更多
Located in the western hinterland,Southwest China is a typical mountainous area covered by plateaus,mountains and hills.Its ruggedness hinders regional internal and external connections,and its poor transportation inf...Located in the western hinterland,Southwest China is a typical mountainous area covered by plateaus,mountains and hills.Its ruggedness hinders regional internal and external connections,and its poor transportation infrastructure has long constrained the socioeconomic development of Southwest China.Based on the GIS transportation database,this paper explored the spatiotemporal evolution and characteristics of the land transportation networks and the accessibility of Southwest China from 1917 to 2017.Regional accessibility in Southwest China has significantly improved,and transportation infrastructure has gradually integrated the transportation circles of the52 central cities.The transportation network has followed an evolutionary process from a"hub-spoke pattern"to a"network pattern",while the construction of a high-speed railway(HSR)has brought about significant spatial polarization.We argue that innovation in transportation technology is one of the most effective factors for promoting a significant change in regional accessibility.In addition,the spatial distribution and evolution of accessibility in Southwest China presents a verticalcharacteristic that distinguishes it from the plains,as the spillover effects of new transportation infrastructure on accessibility improvement are partly offset by the mountainous terrain.Additionally,in Southwest China,there is significant"path dependence"in the evolution of the transportation network,since a large portion of the population is concentrated along transportation corridors in mountainous areas.展开更多
The identification of key nodes plays an important role in improving the robustness of the transportation network.For different types of transportation networks,the effect of the same identification method may be diff...The identification of key nodes plays an important role in improving the robustness of the transportation network.For different types of transportation networks,the effect of the same identification method may be different.It is of practical significance to study the key nodes identification methods corresponding to various types of transportation networks.Based on the knowledge of complex networks,the metro networks and the bus networks are selected as the objects,and the key nodes are identified by the node degree identification method,the neighbor node degree identification method,the weighted k-shell degree neighborhood identification method(KSD),the degree k-shell identification method(DKS),and the degree k-shell neighborhood identification method(DKSN).Take the network efficiency and the largest connected subgraph as the effective indicators.The results show that the KSD identification method that comprehensively considers the elements has the best recognition effect and has certain practical significance.展开更多
Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field ad...Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neural network with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.展开更多
Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network cap...Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.展开更多
With the advent of 5G era,the rise of cloud services,virtual reality/virtual reality(AR/VR),vehicle networking and other technologies has put forward new requirements for the bandwidth and delay of the bearer network....With the advent of 5G era,the rise of cloud services,virtual reality/virtual reality(AR/VR),vehicle networking and other technologies has put forward new requirements for the bandwidth and delay of the bearer network.Traditional Ethernet technology cannot meet the new requirements very well.Flex Ethernet(FlexE)technology has emerged as the times require.This paper introduces the background,standardization process,functional principle,application mode and technical advantages of FlexE technology,and finally analyses its application prospects and shortcomings in 5G mobile transport network.展开更多
It is very important to establish cooperative mechanism to guarantee allmembers to develop their e-conomies in the Yellow Sea Rim. In this paper, the development strategiesof shipping centers and transportation networ...It is very important to establish cooperative mechanism to guarantee allmembers to develop their e-conomies in the Yellow Sea Rim. In this paper, the development strategiesof shipping centers and transportation network are discussed based on economic globalizationtendency. The results argue that a united transportation network should be built in order to promotethe economic competition of Northeast Asia in the world. As a key component of the economiccooperation, a hierarchical shipping centers network should be established with Hong Kong, Shanghai,Pusan, Kobe, and Tokyo as cores. The authorities of China, Japan, R. 0. Korea and D. P. R. Koreashould make more efforts to build a set of cooperation institutions based on raising thetransportation efficiency.展开更多
In this paper, an evolutionary model of bus transport network in B-space is developed. It includes the effect of the overlapping ratio of new route on network performance and overcomes the disadvantage, i.e. lack of e...In this paper, an evolutionary model of bus transport network in B-space is developed. It includes the effect of the overlapping ratio of new route on network performance and overcomes the disadvantage, i.e. lack of economic consideration, in the evolutionary bus transport network model in P-space proposed by Chen et al (2007). The degree distribution functions are derived by using the mean-field method and the master equation method, separately. The relationship between the new stop ratio of a route, λ, and the error in exponential of degree distribution function from the mean-field method is developed as ASlope= λ/(1 -λ) + ln(1-λ). Finally, the bus transport networks of Hangzhou and Nanjing are simulated by using this model, and the results show that some characteristic index values of the simulated networks are closer to the empirical data than those from Chen's model.展开更多
The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how ma...The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how many airlines are really necessary to represent the optimal structure of a multilayer air transportation system. Here we take the Chinese air transportation network (CATN) as an example to explore the nature of multiplex systems through the procedure of network aggregation. Specifically, we propose a series of structural measures to characterize the CATN from the multilayered to the aggregated network level. We show how these measures evolve during the network aggregation process in which layers are gradually merged together and find that there is an evident structural transition that happened in the aggregated network with nine randomly chosen airlines merged, where the network features and construction cost of this network are almost equivalent to those of the present CATN with twenty-two airlines under this condition. These findings could shed some light on network structure optimization and management of the Chinese air transportation system.展开更多
We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the s...We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.展开更多
A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy...A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy of Dynamic Joint Routing and Resource Allocation(DJRRA) and its algorithm description are also presented for the proposed layered network model. DJRRA op-timizes the bandwidth usage of interface links between different layers and the logic links inside all layers. The simulation results show that DJRRA can reduce the blocking probability and increase network throughput effectively,which is in contrast to the classical separate sequential routing and resource allocation solutions.展开更多
We abstract the bus transport networks(BTNs)to two kinds of complex networks with space L and spaceP methods respectively.Using improved community detecting algorithm(PKM agglomerative algorithm),we analyzethe communi...We abstract the bus transport networks(BTNs)to two kinds of complex networks with space L and spaceP methods respectively.Using improved community detecting algorithm(PKM agglomerative algorithm),we analyzethe community property of two kinds of BTNs graphs.The results show that the BTNs graph described with space Lmethod have obvious community property,but the other kind of BTNs graph described with space P method have not.The reason is that the BTNs graph described with space P method have the intense overlapping community propertyand general community division algorithms can not identify this kind of community structure.To overcome this problem,we propose a novel community structure called N-depth community and present a corresponding community detectingalgorithm,which can detect overlapping community.Applying the novel community structure and detecting algorithmto a BTN evolution model described with space P,whose network property agrees well with real BTNs',we get obviouscommunity property.展开更多
Delay,as an inevitable real-world phenomenon,is usually ignored in transport network design.A model of urban hybrid transport system with stochastic delay was created on the basis of the idealized public transport sys...Delay,as an inevitable real-world phenomenon,is usually ignored in transport network design.A model of urban hybrid transport system with stochastic delay was created on the basis of the idealized public transport system design.After formulating the total trip time cost composed of accessing time in the sub-region of the city,waiting time at the public transport station,and in-vehicle time in the public transit network,the analytical properties of the total trip time cost function were investigated.The results show that in the urban hybrid transport network design,the total trip time cost reaches its approximate minimum in a δ-neighbourhood of buffer time of 1.5 min,and that through modelling optimal delay in hybrid transport system,the maximal synchronization can be achieved and operational efficiency and passenger satisfaction can be improved.The proposed modelling and analytical investigations are attempts to contribute to more realistic modelling of future idealized public transport system that involves more practical constraints.展开更多
Beam transport network(BTN)with small world(SW)(so-called BTN-SW)and Lorenz chaotic connectednetwork with scale-free(SF)are taken as two typical examples,we proposed a global linear coupling and combined withlocal err...Beam transport network(BTN)with small world(SW)(so-called BTN-SW)and Lorenz chaotic connectednetwork with scale-free(SF)are taken as two typical examples,we proposed a global linear coupling and combined withlocal error feedback methods in sub-networks to realize multi-goal control method of halo and chaos in two networksabove.The simulation results show that the methods above is effective for any chaotic connected networks and has apotential of applications in based-halo-chaos secure communication.展开更多
基金supported by the National Natural Science Foundation of China(52275463,51772240)the National Key Research and Development Program of China(2021YFB3302000)the Key Research and Development Projects of Shaanxi Province,China(2018ZDXM-GY-135)。
文摘The development of energy storage devices with high energy density relies heavily on thick film electrodes,but it is challenging due to the limited ion transport kinetics inherent in thick electrodes.Here,we report on the preparation of a directional vertical array of micro-porous transport networks on LTO electrodes using a femtosecond laser processing strategy,enabling directional ion rapid transport and achieving good electrochemical performance in thick film electrodes.Various three-dimensional(3D)vertically aligned micro-pore networks are innovatively designed,and the structure,kinetics characteristics,and electrochemical performance of the prepared ion transport channels are analyzed and discussed by multiple characterization and testing methods.Furthermore,the rational mechanisms of electrode performance improvement are studied experimentally and simulated from two aspects of structural mechanics and transmission kinetics.The ion diffusion coefficient,rate performance at 60 C,and electrode interface area of the laser-optimized 60-15%micro-porous transport network electrodes increase by 25.2 times,2.2 times,and 2.15 times,respectively than those of untreated electrodes.Therefore,the preparation of 3D micro-porous transport networks by femtosecond laser on ultra-thick electrodes is a feasible way to develop high-energy batteries.In addition,the unique micro-porous transport network structure can be widely extended to design and explore other high-performance energy materials.
基金supported in part by the Science and Technology Project of Hebei Education Department,Grant ZD2021088in part by the S&T Major Project of the Science and Technology Ministry of China,Grant 2017YFE0135700。
文摘In future optical transport networks,lightpath performance analysis is of great practical significance for fully automated management.In general,the quality of transmission(QoT)of lightpaths,measured by optical quality factor or optical signal-to-noise ratio,has a complex time-varying process,along with the interactions of the other lightpath state parameters(LSPs),such as transmit power,chromatic dispersion,polarization mode dispersion.Current studies are mostly focused on lightpath QoT estimation,but ignoring lightpath-level data analytics.In this case,our article proposes a novel lightpath performance analysis method considering recurrence plot(RP)and cross recurrence plot(CRP).Firstly,we give a detailed interpretation on the recurrence patterns of LSPs via a qualitative 2-D RP representation and its quantitative measure.It can potentially enable the accurate and fast lightpath failure detection with a low computational burden.On the other hand,CRP is devoted to modeling the relationships between lightpath QoT and LSPs,and the correlation degree is determined by a geometric mean of multiple indexes of cross recurrence quantification analysis.From the view of application,such CRP analysis can provide the effective knowledge sharing to guarantee more credible QoT prediction.Extensive experiments on a real-world optical network dataset have clearly demonstrated the effectiveness of our proposal.
基金supported by the Science and Technology Project of North China Electric Power Research Institute,which is“Research on Key Technologies for Power Quality Evaluation and Improvement of New Distribution Network Based on Collaborative Interaction of Source-Network-Load-Storage”(KJZ2022016).
文摘The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage control scheme.In this paper,we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV.In the first stage,the action of on-load tap changer and capacitor banks,etc.,are determined by optimal power flow calculation,and the node electricity price is also determined based on dynamic time-of-use tariff mechanism.In the second stage,multiple operating scenarios of multiple types of EVs such as cabs,private cars and buses are considered,and the scheduling results of each EV are solved by building an optimization model based on constraints such as queuing theory,Floyd-Warshall algorithm and traffic flow information.In the third stage,the output power of photovoltaic and energy storage systems is fine-tuned in the normal control mode.The charging power of EVs is also regulated in the emergency control mode to reduce the voltage deviation,and the amount of regulation is calculated based on the fair voltage control mode of EVs.Finally,we test the modified IEEE 33-bus distribution system coupled with the 24-bus Beijing TN.The simulation results show that the proposed scheme can mitigate voltage violations well.
基金The project supported by the Key Projects of National Natural Science Foundation of China under Grant No. 70431002 and National Natural Science Foundation of China under Grant Nos. 70371068 and 10247005
文摘The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructed with the SW topology, the global linear coupling and special linear feedback can realize the synchronization control of beam halo-chaos as well as periodic state in the BTN with the SW topology, respectively. This important result can provide an effective way for the experimental study and the engineering design of the BTN in the high-current accelerator driven radioactive clean nuclear power systems, and may have potential use in prospective applications for halo-chaos secure communication.
基金The Federal Highway Administration(FHWA)under Contract No.DTFH61-98-C-00094the California Department of Transportation(CALTRANS)
文摘The objective of this research is to determine the effect earthquakes have on the performance of transportation network systems.To do this,bridge fragility curves,expressed as a function of peak ground acceleration(PGA)and peak ground velocity(PGV),were developed.Network damage was evaluated under the 1994 Northridge earthquake and scenario earthquakes.A probabilistic model was developed to determine the effect of repair of bridge damage on the improvement of the network performance as days passed after the event.As an example,the system performance degradation measured in terms of an index,'Drivers Delay,'is calculated for the Los Angeles area transportation system,and losses due to Drivers Delay with and without retrofit were estimated.
基金supported by National Natural Science Foundation of China under Grant Nos.60504027 and 60874080the Postdoctor Science Foundation of China under Grant No.20060401037
文摘On the basis of investigating the statistical data of bus transport networks of three big cities in China,wepropose that each bus route is a clique(maximal complete subgraph)and a bus transport network(BTN)consists of alot of cliques,which intensively connect and overlap with each other.We study the network properties,which includethe degree distribution,multiple edges' overlapping time distribution,distribution of the overlap size between any twooverlapping cliques,distribution of the number of cliques that a node belongs to.Naturally,the cliques also constitute anetwork,with the overlapping nodes being their multiple links.We also research its network properties such as degreedistribution,clustering,average path length,and so on.We propose that a BTN has the properties of random cliqueincrement and random overlapping clique,at the same time,a BTN is a small-world network with highly clique-clusteredand highly clique-overlapped.Finally,we introduce a BTN evolution model,whose simulation results agree well withthe statistical laws that emerge in real BTNs.
基金Project(71101155)supported by the National Natural Science Foundation of ChinaProject(2015JJ2184)supported by the Natural Science Foundation of Hunan Province,China
文摘To maintain their capacity,transportation infrastructures are in need of regular maintenance and rehabilitation.The major challenge facing transportation engineers is the network-level policies to maintain the deteriorating roads at an acceptable level of serviceability.In this work,a quantitative transportation network efficiency measure is presented and then how to determine optimally network-level road maintenance policy depending on the road importance to the network performance has been demonstrated.The examples show that the different roads should be set different maintenance time points in terms of the retention capacities of the roads,because the different roads play different roles in network and have different important degrees to the network performance.This network-level road maintenance optimization method could not only save lots of infrastructure investments,but also ensure the service level of the existing transportation system.
基金supported by the National Natural Science Foundation of China(Grants No.41671159)Fundamental Research Funds for the Central Universities for funding(Grants No.XDJK2018B011)Major Projects on Philosophy and Social Sciences of Chongqing Education Commission(Grants No.19SKZDZX08)。
文摘Located in the western hinterland,Southwest China is a typical mountainous area covered by plateaus,mountains and hills.Its ruggedness hinders regional internal and external connections,and its poor transportation infrastructure has long constrained the socioeconomic development of Southwest China.Based on the GIS transportation database,this paper explored the spatiotemporal evolution and characteristics of the land transportation networks and the accessibility of Southwest China from 1917 to 2017.Regional accessibility in Southwest China has significantly improved,and transportation infrastructure has gradually integrated the transportation circles of the52 central cities.The transportation network has followed an evolutionary process from a"hub-spoke pattern"to a"network pattern",while the construction of a high-speed railway(HSR)has brought about significant spatial polarization.We argue that innovation in transportation technology is one of the most effective factors for promoting a significant change in regional accessibility.In addition,the spatial distribution and evolution of accessibility in Southwest China presents a verticalcharacteristic that distinguishes it from the plains,as the spillover effects of new transportation infrastructure on accessibility improvement are partly offset by the mountainous terrain.Additionally,in Southwest China,there is significant"path dependence"in the evolution of the transportation network,since a large portion of the population is concentrated along transportation corridors in mountainous areas.
基金supported by the National Natural Science Foundation of China(Grant No.61961019)the Youth Key Project of the Natural Science Foundation of Jiangxi Province of China(Grant No.20202ACBL212003).
文摘The identification of key nodes plays an important role in improving the robustness of the transportation network.For different types of transportation networks,the effect of the same identification method may be different.It is of practical significance to study the key nodes identification methods corresponding to various types of transportation networks.Based on the knowledge of complex networks,the metro networks and the bus networks are selected as the objects,and the key nodes are identified by the node degree identification method,the neighbor node degree identification method,the weighted k-shell degree neighborhood identification method(KSD),the degree k-shell identification method(DKS),and the degree k-shell neighborhood identification method(DKSN).Take the network efficiency and the largest connected subgraph as the effective indicators.The results show that the KSD identification method that comprehensively considers the elements has the best recognition effect and has certain practical significance.
基金The project supported by the Key Projects of National Natural Science Foundation of China under Grant No. 70431002 and National Natural Science Foundation of China under Grants Nos. 70371068 and 10247005
文摘Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neural network with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.
基金Projects(51378119,51578150)supported by the National Natural Science Foundation of China
文摘Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.
文摘With the advent of 5G era,the rise of cloud services,virtual reality/virtual reality(AR/VR),vehicle networking and other technologies has put forward new requirements for the bandwidth and delay of the bearer network.Traditional Ethernet technology cannot meet the new requirements very well.Flex Ethernet(FlexE)technology has emerged as the times require.This paper introduces the background,standardization process,functional principle,application mode and technical advantages of FlexE technology,and finally analyses its application prospects and shortcomings in 5G mobile transport network.
文摘It is very important to establish cooperative mechanism to guarantee allmembers to develop their e-conomies in the Yellow Sea Rim. In this paper, the development strategiesof shipping centers and transportation network are discussed based on economic globalizationtendency. The results argue that a united transportation network should be built in order to promotethe economic competition of Northeast Asia in the world. As a key component of the economiccooperation, a hierarchical shipping centers network should be established with Hong Kong, Shanghai,Pusan, Kobe, and Tokyo as cores. The authorities of China, Japan, R. 0. Korea and D. P. R. Koreashould make more efforts to build a set of cooperation institutions based on raising thetransportation efficiency.
基金supported by the National Natural Science Foundation of China (Grant No 70571033)the State Key Development Program for Basic Research of China (Grant No 2006CB705500)
文摘In this paper, an evolutionary model of bus transport network in B-space is developed. It includes the effect of the overlapping ratio of new route on network performance and overcomes the disadvantage, i.e. lack of economic consideration, in the evolutionary bus transport network model in P-space proposed by Chen et al (2007). The degree distribution functions are derived by using the mean-field method and the master equation method, separately. The relationship between the new stop ratio of a route, λ, and the error in exponential of degree distribution function from the mean-field method is developed as ASlope= λ/(1 -λ) + ln(1-λ). Finally, the bus transport networks of Hangzhou and Nanjing are simulated by using this model, and the results show that some characteristic index values of the simulated networks are closer to the empirical data than those from Chen's model.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11405118,11401448 and 11301403
文摘The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how many airlines are really necessary to represent the optimal structure of a multilayer air transportation system. Here we take the Chinese air transportation network (CATN) as an example to explore the nature of multiplex systems through the procedure of network aggregation. Specifically, we propose a series of structural measures to characterize the CATN from the multilayered to the aggregated network level. We show how these measures evolve during the network aggregation process in which layers are gradually merged together and find that there is an evident structural transition that happened in the aggregated network with nine randomly chosen airlines merged, where the network features and construction cost of this network are almost equivalent to those of the present CATN with twenty-two airlines under this condition. These findings could shed some light on network structure optimization and management of the Chinese air transportation system.
基金Supported by the Education Foundation of Hubei Province under Grant No D20120104
文摘We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.
基金the Science & Technology Foundation of Huawei Ltd. (No.YJCB2005040SW)the Creative Foundation of Xidian University (No.05030).
文摘A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy of Dynamic Joint Routing and Resource Allocation(DJRRA) and its algorithm description are also presented for the proposed layered network model. DJRRA op-timizes the bandwidth usage of interface links between different layers and the logic links inside all layers. The simulation results show that DJRRA can reduce the blocking probability and increase network throughput effectively,which is in contrast to the classical separate sequential routing and resource allocation solutions.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60504027 and 60874080the China Postdoctoral Science Foundation Funded Project under Grant No.20060401037
文摘We abstract the bus transport networks(BTNs)to two kinds of complex networks with space L and spaceP methods respectively.Using improved community detecting algorithm(PKM agglomerative algorithm),we analyzethe community property of two kinds of BTNs graphs.The results show that the BTNs graph described with space Lmethod have obvious community property,but the other kind of BTNs graph described with space P method have not.The reason is that the BTNs graph described with space P method have the intense overlapping community propertyand general community division algorithms can not identify this kind of community structure.To overcome this problem,we propose a novel community structure called N-depth community and present a corresponding community detectingalgorithm,which can detect overlapping community.Applying the novel community structure and detecting algorithmto a BTN evolution model described with space P,whose network property agrees well with real BTNs',we get obviouscommunity property.
基金Project(70671008)supported by the National Natural Science Foundation of ChinaProject(3340-74236000003)supported by the Scientific Research Innovation Fund Project for Graduate Student of Hunan Province,China
文摘Delay,as an inevitable real-world phenomenon,is usually ignored in transport network design.A model of urban hybrid transport system with stochastic delay was created on the basis of the idealized public transport system design.After formulating the total trip time cost composed of accessing time in the sub-region of the city,waiting time at the public transport station,and in-vehicle time in the public transit network,the analytical properties of the total trip time cost function were investigated.The results show that in the urban hybrid transport network design,the total trip time cost reaches its approximate minimum in a δ-neighbourhood of buffer time of 1.5 min,and that through modelling optimal delay in hybrid transport system,the maximal synchronization can be achieved and operational efficiency and passenger satisfaction can be improved.The proposed modelling and analytical investigations are attempts to contribute to more realistic modelling of future idealized public transport system that involves more practical constraints.
基金the Key Projects of National Natural Science Foundation of China under Grant No.70431002National Natural Science Foundation of China under Grant No.10647001
文摘Beam transport network(BTN)with small world(SW)(so-called BTN-SW)and Lorenz chaotic connectednetwork with scale-free(SF)are taken as two typical examples,we proposed a global linear coupling and combined withlocal error feedback methods in sub-networks to realize multi-goal control method of halo and chaos in two networksabove.The simulation results show that the methods above is effective for any chaotic connected networks and has apotential of applications in based-halo-chaos secure communication.