In the continuous casting of steels, surface transversal cracks are often found. These defects may severely influence the final quality of the products. The evolution of transversal V-shaped cracks with different dept...In the continuous casting of steels, surface transversal cracks are often found. These defects may severely influence the final quality of the products. The evolution of transversal V-shaped cracks with different depth on the surface of a continuously cast steel slab during hot rolling was studied. The artificial V-shaped cracks were made on the surface. The rolling process parameters from an industrial rolling mill have been used as a reference. The speci- mens of rolled workpiece in intermediate slabs were obtained after different rolling passes. The morphology of sur- face crack and microstructure evolution in the rolling process were investigated by optical microscopy. The results show that the depth of surface transversal crack gradually decreased with the increase of rolling passes. The grain size of ferrite and pearlite on the sample surface also gradually reduced. The microstructures around cracks with the dif ferent depth are almost identical, without direct correlation with the initial crack depth.展开更多
Behavior of transversal crack notched on slab corner during vertical-horizontal rolling process was simulated by FEM. The crack tip stress in the whole rolling process was obtained. Influences of the friction coeffici...Behavior of transversal crack notched on slab corner during vertical-horizontal rolling process was simulated by FEM. The crack tip stress in the whole rolling process was obtained. Influences of the friction coefficient, the initial crack size, the edger roll profile, and the groove fillet radii of grooved edger roll on crack tip stress were analyzed. For vertical rolling, the tension stress appears at crack tip near the slab top surface and the compression stress appears at crack tip near the slab side surface for the flat edger roll; however, the compression stress appears at crack tip near the slab top surface and the tension stress appears at crack tip near the slab side surface in the exit stage for the grooved edger roll. For horizontal rolling, the tension stress appears at crack tip just at the exit stage for the flat edger roll, and the tension stress appears in whole rolling stage; the tension stress value near the slab side surface is much larger than that near the slab top surface for the grooved edger roll.展开更多
Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite ...Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite plates is developed. By using Karman theory, the nonlinear dynamic governing equations of the viscoelastic composite plates under transverse periodic loading are es- tablished. By applying the ?nite di?erence method in spatial domain and the Newton-Newmark method in time domain, and using the iterative procedure, the integral-partial di?erential gov- erning equations are solved. Some examples are given and the results are compared with available data.展开更多
Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based n...Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system.展开更多
The plane elastic problem for a semi-strip with a transverse crack is inves- tigated. The initial problem is reduced to a one-dimensional continuous problem by use of an integral transformation method with a generaliz...The plane elastic problem for a semi-strip with a transverse crack is inves- tigated. The initial problem is reduced to a one-dimensional continuous problem by use of an integral transformation method with a generalized scheme. The one-dimensional problem is first formulated as a vector boundary problem, and then reduced to a system of three singular integral equations (SIEs). The system is solved by use of an orthogonal polynomial method and a special generalized method. The contribution of this work is the consideration of kernel fixed singularities in solving the system. The crack length and its location relative to the semi-strip's lateral sides are investigated to simplify the problem's statement. This simplification reduces the initial problem to a system of two SIEs.展开更多
Transverse cracks occur usually in repair welding for thick plate of high strength steel. It needs multiple times of repair welding. The quality of production and deliver deadline will be influenced. Therefore, it is ...Transverse cracks occur usually in repair welding for thick plate of high strength steel. It needs multiple times of repair welding. The quality of production and deliver deadline will be influenced. Therefore, it is very significant to investigate the cause and control of transverse crack in repair welding. In this paper, both ends restraint crack experiment is developed to produce delay transverse crack for high strength steel. Metallographic results show that four types of cracks are found in repair welding metal zone and heat affected zone. Large chevron transverse cracks are found in repair welding zone. Lots of micro transverse cracks are found in inter-layer repair welding metal zone, root HAZ and two ends of repair welding individually. The distribution character and formation mechanism of the transverse crack are further analyzed through hardness testing and residual stress measurement.展开更多
Based on the two-dimensional viscoelastic differential constitutive relation and the thin plate theory, the differential equations of motion of the viscoelastic plate with an all-over part-through crack are establishe...Based on the two-dimensional viscoelastic differential constitutive relation and the thin plate theory, the differential equations of motion of the viscoelastic plate with an all-over part-through crack are established and the expression of additional rotation induced by the crack is derived. The complex eigenvalue equations of the viscoelastic plate with crack are derived by the differential quadrature method, and the 8method is used at the crack continuity conditions. Dimensionless complex frequencies of a crack viscoelastic plate with four edges simply supported, two opposite edges simply supported and other two edges clamped are calculated. The effects of the crack parameter, the aspect ratio and dimensionless delay time of the material on the transverse vibration of the viscoelastic plate are analyzed.展开更多
In this Paper, the saturate spacing of transverse cracks of the 90° ply is originallycalculated by the 3-D finite element method. Thus, a new approach is put forward for predicting the saturate spacing of transve...In this Paper, the saturate spacing of transverse cracks of the 90° ply is originallycalculated by the 3-D finite element method. Thus, a new approach is put forward for predicting the saturate spacing of transverse cracks.展开更多
The problem of a transversely isotropic elastic slab containing two coplanar cracks subjected to an antiplane deformation is considered. With the aid of an integral transform technique, we formulate the problem in ter...The problem of a transversely isotropic elastic slab containing two coplanar cracks subjected to an antiplane deformation is considered. With the aid of an integral transform technique, we formulate the problem in terms of a finite-part singular integral equation which can be solved numerically, Once the integral equation is solved, relevant quantities such as the crack energy can be readily computed.展开更多
An antiplane crack problem concerning a pair of coplanar cracks in a finite transversely isotropic elastic slab is considered. Using Fourier integral transform together with singular integral equation which can be sol...An antiplane crack problem concerning a pair of coplanar cracks in a finite transversely isotropic elastic slab is considered. Using Fourier integral transform together with singular integral equation which can be solvel numerically by suing a collocation technique. Once the integral equation is solved, the relevant crack energy and stress intensity factors of the problem are given. The analysis present can be easily extended to include cases where there are two or more pairs of coplanar cracks in the slab.展开更多
Based on genetic algorithm and neural network algorithm,the finite element analyses on the temperature fields and stress fields of multi-track laser cladding were carried out by using the ANSYS software.The results sh...Based on genetic algorithm and neural network algorithm,the finite element analyses on the temperature fields and stress fields of multi-track laser cladding were carried out by using the ANSYS software.The results show that,in the multi-track cladding process,the temperature field ellipse leans to the cladding formed,and the front cladding has preheating function on the following cladding.During cladding,the longitudinal stress is the largest,the lateral stress is the second,and the thickness direction stress is the smallest.The center of the cladding is in the tensile stress condition.The longitudinal tensile stress is higher than the lateral or thickness direction stress by several times,and the tensile stress achieves the maximum at the area of joint between the cladding and substrate.Therefore,it is inferred that transversal crack is the most main crack form in multi-track laser cladding.Moreover,the joint between cladding and substrate is the crack sensitive area,and this is consistent with the actual experiments.展开更多
The double plate system with a discontinuity in the elastic bonding layer of Winker type is studied in this paper. When the discontinuity is small, it can be taken as an interface crack between the bi-materials or two...The double plate system with a discontinuity in the elastic bonding layer of Winker type is studied in this paper. When the discontinuity is small, it can be taken as an interface crack between the bi-materials or two bodies (plates or beams). By comparison between the number of multifrequencies of analytical solutions of the double plate system free transversal vibrations for the case when the system is with and without disconti- nuity in elastic layer we obtain a theory for experimental vibration method for identification of the presence of an interface crack in the double plate system. The analytical analysis of free transversal vibrations of an elastically connected double plate systems with discontinuity in the elastic layer of Winkler type is presented. The analytical solutions of the coupled partial differential equations for dynamical free and forced vibration processes are obtained by using method of Bernoulli's particular integral and Lagrange's method of variation constants. It is shown that one mode vibration corresponds an infinite or finite multi-frequency regime for free and forced vibrations induced by initial conditions and one- frequency or corresponding number of multi-frequency regime depending on external excitations. It is shown for every shape of vibrations. The analytical solutions show that the discontinuity affects the appearance of multi-frequency regime of time function corresponding to one eigen amplitude function of one mode, and also that time functions of different vibration basic modes are coupled. From final expression we can separate the newgeneralized eigen amplitude functions with correspon- ding time eigen functions of one frequency and multifrequency regime of vibrations.展开更多
The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavement...The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavementscompared to conventional design guidelines. It is achieved through optimizing pavement structural andthickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizingeconomic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volumeconcrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative.This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 mm (6 in.). Thispaper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concretepavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performanceanalyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. Thispermits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axlespectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigidpavements with conventional concrete slab thicknesses and enable rational extrapolation of performance predictionfor thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable lowvolumepavement design using optimized ME solutions for Pittsburgh, PA, conditions.展开更多
As to the continuous casting process of low carbon microalloyed steel, subsurface microstructure evolution plays an important role in the slab surface cracking. In order to study the effect of the slab subsurface micr...As to the continuous casting process of low carbon microalloyed steel, subsurface microstructure evolution plays an important role in the slab surface cracking. In order to study the effect of the slab subsurface microstructure evolution on the transverse cracking, three different secondary cooling patterns (i. e. , mild cooling, strong cooling and controlled cooling) were performed in the corresponding slab curved continuous caster. Based on the metallo- graphic results, three transformation regions were found to be formed with the evolution of microstructures at different depths in the slab subsurface. The three regions are strong cooling transformation (SCT) region, double phase transformation (DPT) region and mild cooling transformation (MCT) region, respectively. Meanwhile, it was also found that the crack index used for evaluating slab surface cracking susceptibility was decreased when the range of the DPT region was increased. This can be explained by the fact that the double phase transformation (austenite-ferrite-austenite) occurred resulting from thermal cycling in DPT region, which resulted in promoting the refinement of prior austenite grains and inhibiting the precipitation of film-like ferrite and chain-like precipitates. Under the con- trolled cooling pattern, the widely-distributed DPT region was formed in the range of 3.5--8.0 mm to the slab surface. And compared with other cooling patterns, the cracking susceptibility is lowest with a crack index of 0.4.展开更多
Thermally sprayed coatings are essentially layered materials and contain large numbers of lamellar pores. It is thus quite necessary to clarify the formation mechanism of lamellar pores which significantly influence c...Thermally sprayed coatings are essentially layered materials and contain large numbers of lamellar pores. It is thus quite necessary to clarify the formation mechanism of lamellar pores which significantly influence coating performances. In the present study, to elaborate the formation mechanism of lamellar pores, the yttria-stabilized zirconia(ZrO_2–7 wt% Y_2O_3, 7YSZ) splats, which have high fracture toughness and tetragonal phase stability, were employed. Interestingly, anomalous epitaxial growth occurred for all deposition temperatures in spite of the extremely high cooling rate,which clearly indicated chemical bonding and complete contact at splat/substrate interface before splat cooling. However, transverse spallation substantially occurred for all deposition temperatures in spite of the high fracture toughness of 7YSZ, which revealed that the lamellar pores were from transverse cracking/spallation due to the large stress during splat cooling. Additionally, fracture mechanics analysis was carried out, and it was found that the stress arose from the constraint effect of the shrinkage of the splat by locally heated substrate with the value about 1.97 GPa. This clearly demonstrated that the stress was indeed large enough to drive transverse cracking/spallation forming lamellar pores during splat cooling. All of these contribute to understanding the essential features of lamellar bonding and further tailoring the coating structures and performance.展开更多
A mathematical model for simulating the fluid flow, heat transfer and solidification in the conventional mold and the chamfer mold, together with a finite element stress-strain model in the straightening process of bo...A mathematical model for simulating the fluid flow, heat transfer and solidification in the conventional mold and the chamfer mold, together with a finite element stress-strain model in the straightening process of both molds, were established for the typical niobium, vanadium, and titanium micro-alloyed steels. On the basis of both numerical analysis, the mold copper plate with an optimum chamfered shape was designed and applied in industrial tests. The predicted results from numerical simulation of fluid flow, heat transfer and solidification in the conven tional mold and the chamfer mold show that the increased chamfered angle leads to an approximately linear increase o[ the slab surface temperature, but it also causes strong flow near the slab corner. Very small chamfered length can lead to a significant increase of the temperature near the slab corner. However, with further increasing the chamfered length, the temperature of the slab corner increased slightly. The calculated results from the finite element analysis of stress-strain during the straightening process show that at the same slope width, the tangential strain on the slat) edges and corners is minimum when the chamfered angle is 30° and 45°, which is only 40° to 46° of rectangular slabs with the same cross-section area. At the same chamfered angle of 30°, when the chamfered length is controlled between 65-85 mm, the tangential strain on the part of the slab edges and corners is relatively smaller. Industrial test results show that the slab corner temperature at straightening segment increases about 100 ℃ by using chamfer mold compared to the conventional molds. The slab transverse corner cracks have been reduced more than 95° in comparison with those in the conventional mold.展开更多
Fatigue crack growth(FCG)behavior of 9 Cr/CrMoV dissimilar welded joint at elevated temperature and different stress ratios was investigated.Attention was paid to the region near the fusion line of 9 Cr where carbon-e...Fatigue crack growth(FCG)behavior of 9 Cr/CrMoV dissimilar welded joint at elevated temperature and different stress ratios was investigated.Attention was paid to the region near the fusion line of 9 Cr where carbon-enriched zone(CEZ)and carbon-depleted zone(CDZ)formed due to carbon migration during the welding process.Hard and brittle tempered martensite dominated the stress ratio-insensitive FCG behavior in the coarse grain zone(CGZ)of 9 Cr-HAZ.For crack near the CGZ-CEZ interface,crack deflection through the CEZ and into the CDZ was observed,accompanied by an accelerating FCG rate.Compared with the severe plastic deformation near the secondary crack in 9 Cr-CGZ,the electron back-scattered diffraction analysis showed less deformation and lower resistance in the direction toward the brittle CEZ,which resulted in the transverse deflection.In spite of the plastic feature in CDZ revealed by fracture morphology,the less carbides due to carbon migration led to lower strength and weaker FCG resistance property in this region.In conclusion,the plasticity deterioration in CEZ and strength loss in CDZ accounted for the FCG path deflection and FCG rate acceleration,respectively,which aggravated the worst FCG resistance property of 9 Cr-HAZ in the dissimilar welded joint.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50271060)
文摘In the continuous casting of steels, surface transversal cracks are often found. These defects may severely influence the final quality of the products. The evolution of transversal V-shaped cracks with different depth on the surface of a continuously cast steel slab during hot rolling was studied. The artificial V-shaped cracks were made on the surface. The rolling process parameters from an industrial rolling mill have been used as a reference. The speci- mens of rolled workpiece in intermediate slabs were obtained after different rolling passes. The morphology of sur- face crack and microstructure evolution in the rolling process were investigated by optical microscopy. The results show that the depth of surface transversal crack gradually decreased with the increase of rolling passes. The grain size of ferrite and pearlite on the sample surface also gradually reduced. The microstructures around cracks with the dif ferent depth are almost identical, without direct correlation with the initial crack depth.
基金State Basic Research Key Projects (973) of China (2006CB605208-1)National Natural Science Foundation of China (50534020)
文摘Behavior of transversal crack notched on slab corner during vertical-horizontal rolling process was simulated by FEM. The crack tip stress in the whole rolling process was obtained. Influences of the friction coefficient, the initial crack size, the edger roll profile, and the groove fillet radii of grooved edger roll on crack tip stress were analyzed. For vertical rolling, the tension stress appears at crack tip near the slab top surface and the compression stress appears at crack tip near the slab side surface for the flat edger roll; however, the compression stress appears at crack tip near the slab top surface and the tension stress appears at crack tip near the slab side surface in the exit stage for the grooved edger roll. For horizontal rolling, the tension stress appears at crack tip just at the exit stage for the flat edger roll, and the tension stress appears in whole rolling stage; the tension stress value near the slab side surface is much larger than that near the slab top surface for the grooved edger roll.
基金Project supported by the National Natural Science Foundation of China (No.10272024).
文摘Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite plates is developed. By using Karman theory, the nonlinear dynamic governing equations of the viscoelastic composite plates under transverse periodic loading are es- tablished. By applying the ?nite di?erence method in spatial domain and the Newton-Newmark method in time domain, and using the iterative procedure, the integral-partial di?erential gov- erning equations are solved. Some examples are given and the results are compared with available data.
基金Project(51778482)supported by the National Natural Science Foundation of China。
文摘Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system.
文摘The plane elastic problem for a semi-strip with a transverse crack is inves- tigated. The initial problem is reduced to a one-dimensional continuous problem by use of an integral transformation method with a generalized scheme. The one-dimensional problem is first formulated as a vector boundary problem, and then reduced to a system of three singular integral equations (SIEs). The system is solved by use of an orthogonal polynomial method and a special generalized method. The contribution of this work is the consideration of kernel fixed singularities in solving the system. The crack length and its location relative to the semi-strip's lateral sides are investigated to simplify the problem's statement. This simplification reduces the initial problem to a system of two SIEs.
基金Tbis research is supported by National Science Foundation (No. 51105252) and by Harbin Creative Talent Tec, hnology Foundation (No. 2010RFQXGO05) and by Heilongjiang Province Education Foundation (No. 20100503066).
文摘Transverse cracks occur usually in repair welding for thick plate of high strength steel. It needs multiple times of repair welding. The quality of production and deliver deadline will be influenced. Therefore, it is very significant to investigate the cause and control of transverse crack in repair welding. In this paper, both ends restraint crack experiment is developed to produce delay transverse crack for high strength steel. Metallographic results show that four types of cracks are found in repair welding metal zone and heat affected zone. Large chevron transverse cracks are found in repair welding zone. Lots of micro transverse cracks are found in inter-layer repair welding metal zone, root HAZ and two ends of repair welding individually. The distribution character and formation mechanism of the transverse crack are further analyzed through hardness testing and residual stress measurement.
基金supported by National Natural Science Foundation of China(No.10872163).
文摘Based on the two-dimensional viscoelastic differential constitutive relation and the thin plate theory, the differential equations of motion of the viscoelastic plate with an all-over part-through crack are established and the expression of additional rotation induced by the crack is derived. The complex eigenvalue equations of the viscoelastic plate with crack are derived by the differential quadrature method, and the 8method is used at the crack continuity conditions. Dimensionless complex frequencies of a crack viscoelastic plate with four edges simply supported, two opposite edges simply supported and other two edges clamped are calculated. The effects of the crack parameter, the aspect ratio and dimensionless delay time of the material on the transverse vibration of the viscoelastic plate are analyzed.
文摘In this Paper, the saturate spacing of transverse cracks of the 90° ply is originallycalculated by the 3-D finite element method. Thus, a new approach is put forward for predicting the saturate spacing of transverse cracks.
文摘The problem of a transversely isotropic elastic slab containing two coplanar cracks subjected to an antiplane deformation is considered. With the aid of an integral transform technique, we formulate the problem in terms of a finite-part singular integral equation which can be solved numerically, Once the integral equation is solved, relevant quantities such as the crack energy can be readily computed.
文摘An antiplane crack problem concerning a pair of coplanar cracks in a finite transversely isotropic elastic slab is considered. Using Fourier integral transform together with singular integral equation which can be solvel numerically by suing a collocation technique. Once the integral equation is solved, the relevant crack energy and stress intensity factors of the problem are given. The analysis present can be easily extended to include cases where there are two or more pairs of coplanar cracks in the slab.
基金Project(HIT(WH)200711)supported by the Study Fund of Harbin Institute of Technology at Weihai,China。
文摘Based on genetic algorithm and neural network algorithm,the finite element analyses on the temperature fields and stress fields of multi-track laser cladding were carried out by using the ANSYS software.The results show that,in the multi-track cladding process,the temperature field ellipse leans to the cladding formed,and the front cladding has preheating function on the following cladding.During cladding,the longitudinal stress is the largest,the lateral stress is the second,and the thickness direction stress is the smallest.The center of the cladding is in the tensile stress condition.The longitudinal tensile stress is higher than the lateral or thickness direction stress by several times,and the tensile stress achieves the maximum at the area of joint between the cladding and substrate.Therefore,it is inferred that transversal crack is the most main crack form in multi-track laser cladding.Moreover,the joint between cladding and substrate is the crack sensitive area,and this is consistent with the actual experiments.
文摘The double plate system with a discontinuity in the elastic bonding layer of Winker type is studied in this paper. When the discontinuity is small, it can be taken as an interface crack between the bi-materials or two bodies (plates or beams). By comparison between the number of multifrequencies of analytical solutions of the double plate system free transversal vibrations for the case when the system is with and without disconti- nuity in elastic layer we obtain a theory for experimental vibration method for identification of the presence of an interface crack in the double plate system. The analytical analysis of free transversal vibrations of an elastically connected double plate systems with discontinuity in the elastic layer of Winkler type is presented. The analytical solutions of the coupled partial differential equations for dynamical free and forced vibration processes are obtained by using method of Bernoulli's particular integral and Lagrange's method of variation constants. It is shown that one mode vibration corresponds an infinite or finite multi-frequency regime for free and forced vibrations induced by initial conditions and one- frequency or corresponding number of multi-frequency regime depending on external excitations. It is shown for every shape of vibrations. The analytical solutions show that the discontinuity affects the appearance of multi-frequency regime of time function corresponding to one eigen amplitude function of one mode, and also that time functions of different vibration basic modes are coupled. From final expression we can separate the newgeneralized eigen amplitude functions with correspon- ding time eigen functions of one frequency and multifrequency regime of vibrations.
基金the financial support from the University of Pittsburgh Anthony Gill Chair and the Impactful Resilient Infrastructure Science and Engineering Consortium(IRISE)at University of Pittsburgh.
文摘The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavementscompared to conventional design guidelines. It is achieved through optimizing pavement structural andthickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizingeconomic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volumeconcrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative.This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 mm (6 in.). Thispaper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concretepavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performanceanalyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. Thispermits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axlespectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigidpavements with conventional concrete slab thicknesses and enable rational extrapolation of performance predictionfor thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable lowvolumepavement design using optimized ME solutions for Pittsburgh, PA, conditions.
基金Item Sponsored by National Natural Science Foundation of China(51174242)
文摘As to the continuous casting process of low carbon microalloyed steel, subsurface microstructure evolution plays an important role in the slab surface cracking. In order to study the effect of the slab subsurface microstructure evolution on the transverse cracking, three different secondary cooling patterns (i. e. , mild cooling, strong cooling and controlled cooling) were performed in the corresponding slab curved continuous caster. Based on the metallo- graphic results, three transformation regions were found to be formed with the evolution of microstructures at different depths in the slab subsurface. The three regions are strong cooling transformation (SCT) region, double phase transformation (DPT) region and mild cooling transformation (MCT) region, respectively. Meanwhile, it was also found that the crack index used for evaluating slab surface cracking susceptibility was decreased when the range of the DPT region was increased. This can be explained by the fact that the double phase transformation (austenite-ferrite-austenite) occurred resulting from thermal cycling in DPT region, which resulted in promoting the refinement of prior austenite grains and inhibiting the precipitation of film-like ferrite and chain-like precipitates. Under the con- trolled cooling pattern, the widely-distributed DPT region was formed in the range of 3.5--8.0 mm to the slab surface. And compared with other cooling patterns, the cracking susceptibility is lowest with a crack index of 0.4.
基金supported by National Basic Research Program of China(No.2013CB035701)the Fundamental Research Funds for the Central Universitiesthe National Program for Support of Top-notch Young Professionals
文摘Thermally sprayed coatings are essentially layered materials and contain large numbers of lamellar pores. It is thus quite necessary to clarify the formation mechanism of lamellar pores which significantly influence coating performances. In the present study, to elaborate the formation mechanism of lamellar pores, the yttria-stabilized zirconia(ZrO_2–7 wt% Y_2O_3, 7YSZ) splats, which have high fracture toughness and tetragonal phase stability, were employed. Interestingly, anomalous epitaxial growth occurred for all deposition temperatures in spite of the extremely high cooling rate,which clearly indicated chemical bonding and complete contact at splat/substrate interface before splat cooling. However, transverse spallation substantially occurred for all deposition temperatures in spite of the high fracture toughness of 7YSZ, which revealed that the lamellar pores were from transverse cracking/spallation due to the large stress during splat cooling. Additionally, fracture mechanics analysis was carried out, and it was found that the stress arose from the constraint effect of the shrinkage of the splat by locally heated substrate with the value about 1.97 GPa. This clearly demonstrated that the stress was indeed large enough to drive transverse cracking/spallation forming lamellar pores during splat cooling. All of these contribute to understanding the essential features of lamellar bonding and further tailoring the coating structures and performance.
基金Sponsored by National Natural Science Foundation of China(51204059)
文摘A mathematical model for simulating the fluid flow, heat transfer and solidification in the conventional mold and the chamfer mold, together with a finite element stress-strain model in the straightening process of both molds, were established for the typical niobium, vanadium, and titanium micro-alloyed steels. On the basis of both numerical analysis, the mold copper plate with an optimum chamfered shape was designed and applied in industrial tests. The predicted results from numerical simulation of fluid flow, heat transfer and solidification in the conven tional mold and the chamfer mold show that the increased chamfered angle leads to an approximately linear increase o[ the slab surface temperature, but it also causes strong flow near the slab corner. Very small chamfered length can lead to a significant increase of the temperature near the slab corner. However, with further increasing the chamfered length, the temperature of the slab corner increased slightly. The calculated results from the finite element analysis of stress-strain during the straightening process show that at the same slope width, the tangential strain on the slat) edges and corners is minimum when the chamfered angle is 30° and 45°, which is only 40° to 46° of rectangular slabs with the same cross-section area. At the same chamfered angle of 30°, when the chamfered length is controlled between 65-85 mm, the tangential strain on the part of the slab edges and corners is relatively smaller. Industrial test results show that the slab corner temperature at straightening segment increases about 100 ℃ by using chamfer mold compared to the conventional molds. The slab transverse corner cracks have been reduced more than 95° in comparison with those in the conventional mold.
基金financial support by the National Natural Science Foundation of China(No.52001200)the experimental support by Instrumental Analysis Center of SJTU。
文摘Fatigue crack growth(FCG)behavior of 9 Cr/CrMoV dissimilar welded joint at elevated temperature and different stress ratios was investigated.Attention was paid to the region near the fusion line of 9 Cr where carbon-enriched zone(CEZ)and carbon-depleted zone(CDZ)formed due to carbon migration during the welding process.Hard and brittle tempered martensite dominated the stress ratio-insensitive FCG behavior in the coarse grain zone(CGZ)of 9 Cr-HAZ.For crack near the CGZ-CEZ interface,crack deflection through the CEZ and into the CDZ was observed,accompanied by an accelerating FCG rate.Compared with the severe plastic deformation near the secondary crack in 9 Cr-CGZ,the electron back-scattered diffraction analysis showed less deformation and lower resistance in the direction toward the brittle CEZ,which resulted in the transverse deflection.In spite of the plastic feature in CDZ revealed by fracture morphology,the less carbides due to carbon migration led to lower strength and weaker FCG resistance property in this region.In conclusion,the plasticity deterioration in CEZ and strength loss in CDZ accounted for the FCG path deflection and FCG rate acceleration,respectively,which aggravated the worst FCG resistance property of 9 Cr-HAZ in the dissimilar welded joint.