In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis...In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.展开更多
Intuitionistic trapezoidal fuzzy numbers and their operational laws are defined. Based on these operational laws, some aggregation operators, including intuitionistic trapezoidal fuzzy weighted arithmetic averaging op...Intuitionistic trapezoidal fuzzy numbers and their operational laws are defined. Based on these operational laws, some aggregation operators, including intuitionistic trapezoidal fuzzy weighted arithmetic averaging operator and weighted geometric averaging operator are proposed. Expected values, score function, and accuracy function of intuitionitsic trapezoidal fuzzy numbers are defined. Based on these, a kind of intuitionistic trapezoidal fuzzy multi-criteria decision making method is proposed. By using these aggregation operators, criteria values are aggregated and integrated intuitionistic trapezoidal fuzzy numbers of alternatives are attained. By comparing score function and accuracy function values of integrated fuzzy numbers, a ranking of the whole alternative set can be attained. An example is given to show the feasibility and availability of the method.展开更多
The thermo-hydraulic properties of circular tubes with a twisted tape inside(used accordingly to induce turbulence and enhance heat transfer through the tube wall)are described for Reynolds Numbers ranging from 830 to...The thermo-hydraulic properties of circular tubes with a twisted tape inside(used accordingly to induce turbulence and enhance heat transfer through the tube wall)are described for Reynolds Numbers ranging from 830 to 1990.Tapes twisted with the three distinct twist ratios are considered,namely,6,4.4 and 3.Air is used as the working fluid in several tests.For the sake of comparison,the standard tube with no insert is also examined.It is shown that in the presence of the twisted tape,the‘frictional factor’,‘Nusselt Number’and the‘thermal performance factor’are much higher than those obtained for the plain tube.Moreover,the tapes having the lowest twist ratio,i.e.,3,are more effective than the others in terms of heat transfer augmentation.The‘thermal performance factor’is greater than one for all the twisted tapes used in the experiments,which confirms the enhanced performances of the heat exchanger and the related savings in terms of total energy.展开更多
Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The ...Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The independent variables, coefficients of independent variables and dependent variable in the regression model are fuzzy numbers in different times and TW, the shape preserving operator, is the only T-norm which induces a shape preserving multiplication of LL-type of fuzzy numbers. So, in this paper, we propose a new fuzzy regression model based on LL-type of trapezoidal fuzzy numbers and TW. Firstly, we introduce the basic fuzzy set theories, the basic arithmetic propositions of the shape preserving operator and a new distance measure between trapezoidal numbers. Secondly, we investigate the specific model algorithms for FIFCFO model (fuzzy input-fuzzy coefficient-fuzzy output model) and introduce three advantages of fit criteria, Error Index, Similarity Measure and Distance Criterion. Thirdly, we use a design set and two reference sets to make a comparison between our proposed model and the reference models and determine their goodness with the above three criteria. Finally, we draw the conclusion that our proposed model is reasonable and has better prediction accuracy, but short of robust, comparing to the reference models by the three goodness of fit criteria. So, we can expand our traditional fuzzy regression model to our proposed new model.展开更多
In this paper, we introduce a method to obtain the nearest trapezoidal approximation of fuzzy numbers so that preserving conditions expect interval and include the core of a fuzzy number.
This paper proposes anoptimal fuzzy-based model for obtaining crisp priorities for Fuzzy-AHP comparison matrices.Crisp judgments cannot be given for real-life situations,as most of these include some level of fuzzines...This paper proposes anoptimal fuzzy-based model for obtaining crisp priorities for Fuzzy-AHP comparison matrices.Crisp judgments cannot be given for real-life situations,as most of these include some level of fuzziness and com-plexity.In these situations,judgments are represented by the set of fuzzy numbers.Most of the fuzzy optimization models derive crisp priorities for judgments repre-sented with Triangular Fuzzy Numbers(TFNs)only.They do not work for other types of Triangular Shaped Fuzzy Numbers(TSFNs)and Trapezoidal Fuzzy Numbers(TrFNs).To overcome this problem,a sum of squared error(SSE)based optimization model is proposed.Unlike some other methods,the proposed model derives crisp weights from all of the above-mentioned fuzzy judgments.A fuzzy number is simulated using the Monte Carlo method.A threshold-based constraint is also applied to minimize the deviation from the initial judgments.Genetic Algorithm(GA)is used to solve the optimization model.We have also conducted casestudiesto show the proposed approach’s advantages over the existingmethods.Results show that the proposed model outperforms other models to minimize SSE and deviation from initial judgments.Thus,the proposed model can be applied in various real time scenarios as it can reduce the SSE value upto 29%compared to the existing studies.展开更多
Mixed convection of heat and mass transfer in an isosceles trapezoidal cavity has been studied numerically. Constant heat flux is imposed through four outlets and the grid is insulated. The inclined walls are maintain...Mixed convection of heat and mass transfer in an isosceles trapezoidal cavity has been studied numerically. Constant heat flux is imposed through four outlets and the grid is insulated. The inclined walls are maintained in natural convection while the lower horizontal wall is adiabatic. These conditions reflect the air draft zone of the ASUTO charcoal stove. The governing two-di- mensional flow equations have been solved by using the finite difference method and Thomas’s algorithm. The investigations are conducted for different values of Richardson (R<sub>i</sub>), Reynolds number (R<sub>e</sub>) and inclination angles of sidewalls. The results are presented in terms of streamlines, isotherms, moisture contours. It was found that for Reynolds number (R<sub>e</sub>) equal to 100, the flow pattern is strongly dependent on the inclination angle and Richardson number. Thus, for high Richardson number (R<sub>i</sub>) values (10, 100), the dominance of natural convection over the flow structure decreases with the decreasing of the inclination angle of sidewalls of the cavity. For R<sub>i</sub> = 1, an optimum air draft corresponds to an inclination angle in the vicinity of 22° while for R<sub>i</sub> = 10 or 100 (in dominance of natural convection), the optimum inclination angle for air draft is in the vicinity of 15°.展开更多
Purpose–The purpose of this paper is to develop a multi-attribute group decision-making(MAGDM)method under the q-rung orthopair trapezoidal fuzzy environment,which calculates the interaction between the criteria depe...Purpose–The purpose of this paper is to develop a multi-attribute group decision-making(MAGDM)method under the q-rung orthopair trapezoidal fuzzy environment,which calculates the interaction between the criteria depending on the proposed q-rung orthopair trapezoidal fuzzy aggregation Choquet integral(q-ROTrFACI)and employ TODIM(an acronym in Portuguese of Interactive and Multi-criteria Decision Making)to consider the risk psychology of decision-makers,to determine the optimal ranking of alternatives.Design/methodology/approach–In MAGDM,q-rung orthopair trapezoidal fuzzy numbers(q-ROTrFNs)are efficient to indicate the quantitative vagueness of decision-makers.The q-ROTrFACI operator is defined and some properties are proved.Then,a novel similarity measure is developed by fusing the area and coordinates of the q-rung orthopair trapezoidal fuzzy function.Based on the above,a Choquet integral-based TODIM(CI-TODIM)method to consider the risk psychology of decision-makers is proposed and two cases are provided to prove superiority of the method.Findings–The paper investigates q-ROTrFACI operator to productively solve problems with interdependent criteria.Then,an approach is proposed to determine the center point of q–ROTrFNs and a q-rung orthopair trapezoidal fuzzy similarity is constructed.Furthermore,CI-TODIM method is devised based on the proposed q-ROTrFACI operator and similarity in q-rung orthopair trapezoidal fuzzy context.The illustration example of business models’solutions and hypertension health management are given to demonstrate the effectiveness and superiority of proposed method.Originality/value–Thepaperdevelops a novelCI-TODIMmethodthat effectivelysolves the MAGDM problems under the premise of fully considering the priority of criteria and the risk preference of decision-makers,which provides guiding advantages for practical decision-making and enriches the application of decision-making theory.展开更多
A method for ranking complementary judgment matrixes with traspezoidal fuzzy numbers based on Hausdorff metric distance and fuzzy compromise decision approach is proposed. With regard to fuzzy number complementary jud...A method for ranking complementary judgment matrixes with traspezoidal fuzzy numbers based on Hausdorff metric distance and fuzzy compromise decision approach is proposed. With regard to fuzzy number complementary judgment matrixes given by a decider group whose members have various weights, the expert's information was aggregated first by means of simple weight average(SWA) method and Bonissone calculational method. Hence a matrix including all the experts' preference information was got. Then the matrix' column members were added up and the fuzzy evaluation values of the alternatives were got. Lastly, the Hausdorff metric distance and fuzzy compromise decision approach were used to rank the fuzzy evaluation values and then the ranking values of all the alternatives were got. Because exact numbers and triangular fuzzy numbers could all be transformed into trapezoidal fuzzy numbers, the method developed can rank complementary judgment matrixes with trapezoidal fuzzy numbers, triangular fuzzy numbers and exact numbers as well. An illustrative example is also given to verify the developed method and to demonstrate its feasibility and practicality.展开更多
In this paper a fuzzy transportation problem under a fuzzy environment is solved using octagonal fuzzy numbers.The transportation problem is significant and has been widely studied in the field of applied mathematics ...In this paper a fuzzy transportation problem under a fuzzy environment is solved using octagonal fuzzy numbers.The transportation problem is significant and has been widely studied in the field of applied mathematics to solve a system of linear equations in many applications in science.Systems of concurrent linear equations play a vital major role in operational research.The main perspective of this research paper is to find out the minimum amount of transportation cost of some supplies through a capacitated network formerly the availability and the demand notes are octagonal fuzzy numbers.Octagonal fuzzy numbers are used and showed a membership function.To illustrate this method,a fuzzy transportation problem is solved by using octagonal fuzzy numbers using the ranking technique.It is shown that it is the best optimal solution and it is demonstrated with a numerical example.展开更多
文摘In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.
基金supported by the National Natural Science Foundation of China (70771115).
文摘Intuitionistic trapezoidal fuzzy numbers and their operational laws are defined. Based on these operational laws, some aggregation operators, including intuitionistic trapezoidal fuzzy weighted arithmetic averaging operator and weighted geometric averaging operator are proposed. Expected values, score function, and accuracy function of intuitionitsic trapezoidal fuzzy numbers are defined. Based on these, a kind of intuitionistic trapezoidal fuzzy multi-criteria decision making method is proposed. By using these aggregation operators, criteria values are aggregated and integrated intuitionistic trapezoidal fuzzy numbers of alternatives are attained. By comparing score function and accuracy function values of integrated fuzzy numbers, a ranking of the whole alternative set can be attained. An example is given to show the feasibility and availability of the method.
文摘The thermo-hydraulic properties of circular tubes with a twisted tape inside(used accordingly to induce turbulence and enhance heat transfer through the tube wall)are described for Reynolds Numbers ranging from 830 to 1990.Tapes twisted with the three distinct twist ratios are considered,namely,6,4.4 and 3.Air is used as the working fluid in several tests.For the sake of comparison,the standard tube with no insert is also examined.It is shown that in the presence of the twisted tape,the‘frictional factor’,‘Nusselt Number’and the‘thermal performance factor’are much higher than those obtained for the plain tube.Moreover,the tapes having the lowest twist ratio,i.e.,3,are more effective than the others in terms of heat transfer augmentation.The‘thermal performance factor’is greater than one for all the twisted tapes used in the experiments,which confirms the enhanced performances of the heat exchanger and the related savings in terms of total energy.
文摘Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The independent variables, coefficients of independent variables and dependent variable in the regression model are fuzzy numbers in different times and TW, the shape preserving operator, is the only T-norm which induces a shape preserving multiplication of LL-type of fuzzy numbers. So, in this paper, we propose a new fuzzy regression model based on LL-type of trapezoidal fuzzy numbers and TW. Firstly, we introduce the basic fuzzy set theories, the basic arithmetic propositions of the shape preserving operator and a new distance measure between trapezoidal numbers. Secondly, we investigate the specific model algorithms for FIFCFO model (fuzzy input-fuzzy coefficient-fuzzy output model) and introduce three advantages of fit criteria, Error Index, Similarity Measure and Distance Criterion. Thirdly, we use a design set and two reference sets to make a comparison between our proposed model and the reference models and determine their goodness with the above three criteria. Finally, we draw the conclusion that our proposed model is reasonable and has better prediction accuracy, but short of robust, comparing to the reference models by the three goodness of fit criteria. So, we can expand our traditional fuzzy regression model to our proposed new model.
文摘In this paper, we introduce a method to obtain the nearest trapezoidal approximation of fuzzy numbers so that preserving conditions expect interval and include the core of a fuzzy number.
文摘This paper proposes anoptimal fuzzy-based model for obtaining crisp priorities for Fuzzy-AHP comparison matrices.Crisp judgments cannot be given for real-life situations,as most of these include some level of fuzziness and com-plexity.In these situations,judgments are represented by the set of fuzzy numbers.Most of the fuzzy optimization models derive crisp priorities for judgments repre-sented with Triangular Fuzzy Numbers(TFNs)only.They do not work for other types of Triangular Shaped Fuzzy Numbers(TSFNs)and Trapezoidal Fuzzy Numbers(TrFNs).To overcome this problem,a sum of squared error(SSE)based optimization model is proposed.Unlike some other methods,the proposed model derives crisp weights from all of the above-mentioned fuzzy judgments.A fuzzy number is simulated using the Monte Carlo method.A threshold-based constraint is also applied to minimize the deviation from the initial judgments.Genetic Algorithm(GA)is used to solve the optimization model.We have also conducted casestudiesto show the proposed approach’s advantages over the existingmethods.Results show that the proposed model outperforms other models to minimize SSE and deviation from initial judgments.Thus,the proposed model can be applied in various real time scenarios as it can reduce the SSE value upto 29%compared to the existing studies.
文摘Mixed convection of heat and mass transfer in an isosceles trapezoidal cavity has been studied numerically. Constant heat flux is imposed through four outlets and the grid is insulated. The inclined walls are maintained in natural convection while the lower horizontal wall is adiabatic. These conditions reflect the air draft zone of the ASUTO charcoal stove. The governing two-di- mensional flow equations have been solved by using the finite difference method and Thomas’s algorithm. The investigations are conducted for different values of Richardson (R<sub>i</sub>), Reynolds number (R<sub>e</sub>) and inclination angles of sidewalls. The results are presented in terms of streamlines, isotherms, moisture contours. It was found that for Reynolds number (R<sub>e</sub>) equal to 100, the flow pattern is strongly dependent on the inclination angle and Richardson number. Thus, for high Richardson number (R<sub>i</sub>) values (10, 100), the dominance of natural convection over the flow structure decreases with the decreasing of the inclination angle of sidewalls of the cavity. For R<sub>i</sub> = 1, an optimum air draft corresponds to an inclination angle in the vicinity of 22° while for R<sub>i</sub> = 10 or 100 (in dominance of natural convection), the optimum inclination angle for air draft is in the vicinity of 15°.
基金This work is funded in part by Department of Shenzhen Local Science and Technology Development(No:2021Szvup052).
文摘Purpose–The purpose of this paper is to develop a multi-attribute group decision-making(MAGDM)method under the q-rung orthopair trapezoidal fuzzy environment,which calculates the interaction between the criteria depending on the proposed q-rung orthopair trapezoidal fuzzy aggregation Choquet integral(q-ROTrFACI)and employ TODIM(an acronym in Portuguese of Interactive and Multi-criteria Decision Making)to consider the risk psychology of decision-makers,to determine the optimal ranking of alternatives.Design/methodology/approach–In MAGDM,q-rung orthopair trapezoidal fuzzy numbers(q-ROTrFNs)are efficient to indicate the quantitative vagueness of decision-makers.The q-ROTrFACI operator is defined and some properties are proved.Then,a novel similarity measure is developed by fusing the area and coordinates of the q-rung orthopair trapezoidal fuzzy function.Based on the above,a Choquet integral-based TODIM(CI-TODIM)method to consider the risk psychology of decision-makers is proposed and two cases are provided to prove superiority of the method.Findings–The paper investigates q-ROTrFACI operator to productively solve problems with interdependent criteria.Then,an approach is proposed to determine the center point of q–ROTrFNs and a q-rung orthopair trapezoidal fuzzy similarity is constructed.Furthermore,CI-TODIM method is devised based on the proposed q-ROTrFACI operator and similarity in q-rung orthopair trapezoidal fuzzy context.The illustration example of business models’solutions and hypertension health management are given to demonstrate the effectiveness and superiority of proposed method.Originality/value–Thepaperdevelops a novelCI-TODIMmethodthat effectivelysolves the MAGDM problems under the premise of fully considering the priority of criteria and the risk preference of decision-makers,which provides guiding advantages for practical decision-making and enriches the application of decision-making theory.
文摘A method for ranking complementary judgment matrixes with traspezoidal fuzzy numbers based on Hausdorff metric distance and fuzzy compromise decision approach is proposed. With regard to fuzzy number complementary judgment matrixes given by a decider group whose members have various weights, the expert's information was aggregated first by means of simple weight average(SWA) method and Bonissone calculational method. Hence a matrix including all the experts' preference information was got. Then the matrix' column members were added up and the fuzzy evaluation values of the alternatives were got. Lastly, the Hausdorff metric distance and fuzzy compromise decision approach were used to rank the fuzzy evaluation values and then the ranking values of all the alternatives were got. Because exact numbers and triangular fuzzy numbers could all be transformed into trapezoidal fuzzy numbers, the method developed can rank complementary judgment matrixes with trapezoidal fuzzy numbers, triangular fuzzy numbers and exact numbers as well. An illustrative example is also given to verify the developed method and to demonstrate its feasibility and practicality.
文摘In this paper a fuzzy transportation problem under a fuzzy environment is solved using octagonal fuzzy numbers.The transportation problem is significant and has been widely studied in the field of applied mathematics to solve a system of linear equations in many applications in science.Systems of concurrent linear equations play a vital major role in operational research.The main perspective of this research paper is to find out the minimum amount of transportation cost of some supplies through a capacitated network formerly the availability and the demand notes are octagonal fuzzy numbers.Octagonal fuzzy numbers are used and showed a membership function.To illustrate this method,a fuzzy transportation problem is solved by using octagonal fuzzy numbers using the ranking technique.It is shown that it is the best optimal solution and it is demonstrated with a numerical example.